

Abstract ID: 102

Thursday 20 Oct, 14:40

## Quantitative analysis of diffuse electron scattering in the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2

## Romy Poppe

Materials with short-range order produce diffraction patterns that contain both Bragg reflections and diffuse scattering. Our study shows, for the first time, a refinement of short-range order parameters from the diffuse scattering in single-crystal electron diffraction data. The approach was demonstrated on the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2, for which the crystals are too small to be investigated with single-crystal X-ray or single-crystal neutron diffraction. Both the amount of stacking faults and the percentage of the different twins in the crystal were refined from the intensity distribution of the diffuse streaks using a differential evolutionary algorithm in DISCUS [1].

The approach was applied on reciprocal space sections reconstructed from three-dimensional electron diffraction (3D ED) data since they exhibited less dynamical effects compared to in-zone precession electron diffraction (PED) patterns. The effect of dynamical scattering and thermal diffuse scattering on the intensity distribution of the diffuse streaks will also be discussed.

## Funding information

The research leading to these results has received funding from the Research Foundation Flanders (FWO Vlaanderen) (grant No. G035619N and grant No. G040116N).

[1] Proffen, T., & Neder, R. B. (1997). J. Appl. Crystallogr. 30, 171-175.

**Primary author(s):** Ms. POPPE, Romy (University of Antwerp)

**Co-author(s):** Mrs. VANDEMEULEBROUCKE, Daphne (University of Antwerp); Prof. NEDER, Reinhard (Friedrich-Alexander-Universität Erlangen-Nürnberg); Prof. HADERMANN, Joke (University of Antwerp)