WinPLOTR :

WinPLOTR @ FPSchool, ILL, 21-26 Oct. 2019

a graphical tool for powder diffraction data analysis

(Tutorials and demos, download, what's new ?, links ...)

WinPLOTR has been designed following two concepts :

- WinPLOTR is a program to plot and analyse powder diffraction patterns. It can be used to plot raw or normalized data files coming from different kinds of diffractometers (neutron and X-ray, conventional or synchrotron radiation) as well as profile refinement files (.PRF) created by the FullProf program.
- WinPLOTR can also be used as a Graphical User Interface for programs used frequently in powder diffraction data analysis (ex: FullProf, DicVol ...) or other external programs defined by the user.

Powder diffraction data features

- Raw data, normalized ou refined data
 - neutrons, X-Rays (conventional or synchrotron)
 - constant wavelength, dispersive energy, time of flight
- Large number of data file formats (only ASCII) coming from several kinds of diffractometers (commercial and home-made)
- File conversion : save data as INSTRMO FP format, multicolumns
- Scattering space
 - scattering variable : 2θ(°)/ t.o.f. (µsec.)/energy (KeV)
 - reciprocal space : Q (Å⁻¹) , 1/d (Å⁻¹), sin θ/λ (Å⁻¹)
 - direct space : d (Å)
- **Different Y scales** : linear, log, √, I.Q²

Graphical features

- Graphics options (mouse handling)
 - Cursor informations : X (including $2\theta/d$ values simultaneously) and Y values
 - Zoom, focus
 - Select and save points (countings, background)

• Plot options

- Change colors, markers type and size, styles ...
- Shift and offset the data (in X and/or Y) [pseudo 3D plots]
- Hidden parts management
- Error barrs

• Graphics output files

- Bitmap
- Postscript
- WinPLOTR output file (.wpl, .pgf)

Calculations features

- Automatic search procedures: background points, Bragg reflections
- Background substraction
- Calculations on diffraction patterns :
 - patterns summation
 - difference between 2 patterns (ex : magnetic part extraction)
 - smoothing
 - multiply X and Y
 - normalisation of diffraction data
 - multiscan data normalisation
- **Profile fitting procedure** (interactif / automatic) (T.C.H. profile function)
- **Microstructural analysis** (Williamson Hall plots)

Calculations tools

• FWHM calculation

- Cagliotti formula
- T.C.H. formula (HG and HL contributions)

• Crystallographic calculations :

- space groups info
- *hkl* list generation
- unit cell volume
- ...

. . .

2. Graphical User Interface for external programs

• **FullProf** *(JRC): profile refinement (Rietveld, profile matching)

File Plot Options Points	
	RESET 🗙

*included in the FPSuite package

2. GUI for external programs

- **Powder Patten Indexing** : **DICVOL** * (D. Louër), **TREOR** * (P.E. Werner), ...:
 - Peak search
 - Save Bragg peak positions as input files for indexation programs (dialog box)
 - WinDICVOL/WinTREOR90 launching
 - If successfull indexation : automatic creation of a **PCR** file for **FullProf** (« pattern matching » mode)
- **SuperCELL*** (JRC) : determination of a super unit cell
- K-search^{*} (JRC) : search propagation wave vector components of a magnetic or structural modulated structure
 - Save extra Bragg peaks on difference pattern of a **PRF** file

Check_Group^{*} (JRC) : search of a space group from a list of integrated intensities (powder or single crystal data)

BOND_STR^{*} (JRC) : distances, angles and bond valence calculations

EdPCR^{*} (JGP-JRC): . editing and modifying **PCR** input file . Files conversion: **CIF** to **PCR**, **INS** to **PCR**

• Any program defined by the user (winplotr.set setting file)

- Located in the folder associated to the WINPLOTR environment variable (ex: c:\>fullprof_suite)
- Definitions of :
 - arrays dimensions
 - external programs to execute through **WinPLOTR**
 - system applications : browser, editor ...
 - graphical plot options : colours, markers ...
 - instrumental parameters : λ , IRF
 - data files extensions
 - ...
- Accessible via the External applications / Edit a file / winplotr.set file menu option

winplotr.set setting file

WinPLOTR settings

[MAIN WINDOW POSITION AND SIZE]

0.100 0.100 0.800 0.800

•

.

.

*

*

*

[DIMENSIONS OF ARRAYS]

-							
Max_Patterns	=	20	!	max.	number	of	patterns
Max_Points	=	60000	!	max.	number	of	data points
Max_Refl	=	20000	!	max.	number	of	Bragg reflections

[RUN PROGRAMS]	
FullProf = wfp2k	! FullProf program
Edit = C:\Program Files\Keditw\KEDITW	32.EXE ! My favorite editor ! WINDOWS VERSION
Dicvol = wdicvol06	! Dicvol program ! WINDOWS VERSION
SuperCell = SuperCell	! SuperCell program
Treor = wtreor90	! TREOR90 program ! WINDOWS VERSION
ITO = wito15	! ITO15 program ! WINDOWS VERSION
MENDEL = mendel	! MY PERIODIC TABLE ! WINDOWS VERSION
GFOURIER = gfourier	! FOURIER PROGRAM ! WINDOWS VERSION
<pre>@CALC_PDF = calc_pdf</pre>	! PDF calculation ! WINDOWS VERSION
<pre>@CRYSCALC = d:\progs\cryscalc</pre>	! Crystallographic calculator ! WINDOWS VERSION
@WINPLOTR2006 = D:\FullProf_Suite\WinPLOTR-200	6.exe ! WinPLOTR_2006 ! Windows version
@K-search = k_search.exe	! K_search ! DOS
<pre>@VESTA = D:\progs\VESTA-win64\vesta.exe</pre>	! VESTA ! W
<pre>@EXPO = D:\progs\EXP02004\expo2004.exe</pre>	! EXPO ! W

*

•	
[SYSTEM APPLICAT	TIONS]
Browser	<pre>= "C:\PROGRAM FILES (X86)\MOZILLA FIREFOX\FIREFOX.EXE"</pre>
PostScriptViewer	r = "C:\Program Files\gs\gs9.14\bin\gswin64.exe"
PDFreader	= "C:\Program Files (x86)\Adobe\Reader 11.0\Reader\ACRORD32.EXE"
BMPviewer	= "C:\WINDOWS\SYSTEM32\MSPAINT.EXE"
CIFviewer	= "D:\PROGS\CCDC\MERCURY 3.1\MERCURY.EXE"

winplotr.set setting file

[AFTER FULLPROF RUN] plot_prf edit_pcr no_draw_fst

[MY WAVELENGTHS (A)] 1.54060 1.54060 1.00000 0.00000

[MY RESOLUTION PARAMETERS (U,V,W,X,Y,Z)]

! HG**2= U.tan**2(theta) + V.tan(theta) + W ! HL = X.tan(theta) + Y/cos(theta) + Z 0.0100 - 0.0100 0.0050 0.0000 0.0000 0.0000

[DATA FILES EXTENSIONS]

.

! format_number extension type 1 *.XY;*.DAT;*.BGR;*.EPF;*.XYN;*.XYS ! 1. X,Y data + INSTRM=10 ! 2. INSTRM=0: Free F.(Ti,step,Tf) 2 *.DAT;*.SUB;*.SIM;*.BAC 3 *.DAT ! 3. INSTRM=1: Old D1A 4 *.DAT;*.D1B ! 4. INSTRM=3: D1B (ILL) 5 *.DAT ! 5. INSTRM=4: Brookhaven(Synchr.) 6 *.DAT ! 6. INSTRM=5: G4.1 7 ! 7. INSTRM=6: D2B/3T2/G4.2 *.DAT ! 8. INSTRM=8: HRPT/DMC (PSI) 8 *.DAT 9 *.UXD ! 9. INSTRM=9: .UXD (D8 CSM) 10 *.DAT ! 10. INSTRM=11: Variable Time step ! 11. GSAS data *.DAT;*.GSS;*.GSA 11 ! 12. CPI (Xrays) 12 *.CPI *.UDF;*.XRDML;*.JCP;*.CSV 13 ! 13. PANalytical formats ! 14. INSTRM=14: ISIS normalized data 14 *.DAT;*.GSS;*.GSA ! 15. Rigaku RINT 15 *.TXT ! 16. DIFFAX (.spc) *.SPC 16

[MY DEFAULT FORMATS (pattern, raw, Rietveld/profile)] 1 56 101

[MY COMMAND LINE DEFAULT FORMATS (.dat, .uxd, .prf)] 2 56 101

winplotr.set setting file

Prof School 5

[BACKGROUND SCREEN]

background	screen color:	RGB(220,220,220)
background	text color:	RGB(60, 60, 60)
background	plot color:	RGB(255,255,255)
plot frame	color:	RGB(0, 0, 0)

[EXCLUDED REGION COLOR]

RGB(192,192,192)

[PATTERNS PLOT OPTIONS]

!n color	marker	size	style	pen_width			
1 RGB(0, 0,255)	4	1.0	1	1			
2 RGB(255, 0, 0)	4	1.0	1	1			
3 RGB(0,128, 0)	4	1.0	1	1			
4 RGB(255, 0,255)	4	1.0	1	1			
5 RGB(128, 0, 0)	4	1.5	1	1			
[PRF PLOT OPTIONS]							
! n color	marker	size	style	pen_width			
1 RGB(255, 0, 0)	4	1.0	Ō	2			
2 RGB(0, 0, 0)	4	0.0	1	2			
3 RGB(0, 0,255)	4	0.0	1	1			
4 RGB(0,128, 0)	8	3.0	Θ	1			
write_Y_negative_gradu	ations=0						
write_PRF_filename=0							
exclude_CELL_from_titl	e=1						
colored_tics=0							
:							
[TEXT FONTS] Typefa	ce	рот	nt i	talic_under	line_stri	ikeout	bold
main title : Arial			18	F	F	F	I
X legend : Times	New Roman		18	Т	F	F	
Y legend : Couri	er New		18	Т	F	F	-
X graduations: Couri	er New		16	F	F	F	-
Y graduations: Couri	er New		16	F	F	F	-
file name : Couri	er		10	F	F	F	I
(hkl) indices: Times	New Roman		10	F	F	F	I
dialog boxes : Times	New Roman		10	F	F	F	

F Т Т Т Т F F

F

- Visualisation of (pseudo) 3D plots
- Run **FP** in sequential mode and plot refined parameters
- Profile fitting procedure
- Background points selection
- WinPLOTR tools
- Run WinPLOTR in command line

1. Powder diffraction data

 Create a buffer file containing the list of data files (common format) to plot, by using the

Tools / create buffer file menu option

Or use the DOS command :

d:\data_3D>dir *.dat > bufferfilename.buf /b

- Open a buffer file
- Select the common data file format

- **2.** Graphical options in WinPLOTR :
 - X and Y shifts
 - Change colors, markers, style
 - Hidden part

2. OpenGL 3D model

Run FullProf in sequential mode :

plot of refined parameters

- Experimental requirements:

- . Diffraction experiment versus external parameter (T, P, time, ...)
- . Common format for all data files to be analysed
- . Specific naming for data files

- FullProf specificities:

- . Only 1 starting PCR file (refine first temperature separately)
- . Profile matching, Rietveld, multiphases
- . Microstructural features (size, strains)
- . Distances calculations
- . hkl's features (integrated intensities, FWHM, ...)

All the patterns will be analysed in the same refinement conditions (background, physical model, number of phases, number of refined parameters...).

The evolution of the refined parameters has to be continuous ! Split temperature ranges if necessary.

N diffraction data: Only 1 pcr input file: pat_1.dat, pat_2.dat ... pat_n.dat
file.pcr (starting parameters) PCR=1

All refined parameters during sequential run are stored in a .SEQ file

Prepare sequential FullProf launching setup

2019

WinPLOTR @ FPSchool, ILL, 21-26 Oct.

Running sequential FullProf

New Full	Prof Program	the second division in which the	rates for the	and suffration of	-		-		
Load	Edit PCR Mode Run Exit								
=>	## FullProf p:	rocessing la	0177.dat		: 0	hi2 =	7.22		•
=>	## FullProf p:	rocessing la	0178.dat		: 0	hi2 =	6.87		
=>	## FullProf p:	rocessing la	0179.dat		: 0	hi2 =	7.17		
=>	## FullProf p:	rocessing la	0180.dat		: 0	hi2 =	7.01		
=>	## FullProf p:	rocessing la	0181.dat		: 0	hi2 =	6.79		
=>	## FullProf p:	rocessing la	0182.dat		: 0	hi2 =	6.99		
=>	## FullProf p:	rocessing la	0183.dat		: 0	hi2 =	7.11		
=>	## FullProf p:	rocessing la	0184.dat		: 0	hi2 =	7.21		
=>	## FullProf p:	rocessing la	0185.dat		: 0	hi2 =	7.28		
=>	## FullProf p:	rocessing la	0186.dat		: 0	hi2 =	7.27		
=>	## FullProf p:	rocessing la	0187.dat		: 0	hi2 =	6.96		
=>	## FullProf p:	rocessing la	0188.dat		: 0	hi2 =	7.08		
=>	## FullProf p:	rocessing la	0189.dat		: 0	hi2 =	7.15		
=>	## FullProf p:	rocessing la	0190.dat		: 0	hi2 =	7.17		
=>	Normal endDetail	ls in la0.lo	g file						E
	Temp	erature:	168.06	Cycle:	4	Chi2:	7.17	la0190.dat	
<u>~</u>	4500		•						
ц С	4000-								
4	3500-		t						
3	3000-		I						
:	2500-		I						
1.4	2000-		1						
9	1500-		H				1		
х	1000		1 1		1 12		I II		
1 t	1000-	1		1. 1					
8	500-			Marcharle	NR.JURIA			Manhan	
ō	0 - , , ,	1 11 1 1 11	ulling the likerod	FILLE ALL FRANK DALLAR			THE FE CONTRACTOR OF THE DATE		
a t	-500-		- marken fragmenter from	Manunanter	- Hourselow		for a second second second	and prover and many services	
н	-1000-		<u>, , , , , , , , , , , , , , , , , , , </u>		2010			ł	
	2	0 40	60	80		100	120	140 2Theta	

71 patterns (1535 points) / 21 refined parameters : 41 sec. of cpu time on my labtop !

Plotting sequential FP results

Plotting sequential FP results

WinPLOTR @ FPSchool, ILL, 21-26 Oct. 2019

Profile fitting procedure in **WinPLOTR**

- Profile function : pseudo-Voigt $PV(x) = \eta L(x) + (1-\eta) G(x)$ T.C.H. formulation (idem NPROF=7) to mimic Voigt function $(L \otimes G)$
- Least-squares refinement of parameters :
 - linear background values
 - \bullet reflections parameters : intensity, position, FWHM, η

Profile fitting procedure

- Starting parameters of L.S. refinements ?
 - 1. Select parameters with the mouse
 - 2. Automatic search
 - 3. From a .PIK input file
 - 4. Single peak / doublet

• selection of starting parameters values

Starting parameters fo	r CWL data profi	e fitting procedure
Xmin:	38.4138832	Xmax: 43.19758220
lambda1 (Å):	0	lambda2 (Å): 0 I(Ka2)/I(Ka1) ratio: 0
Left background:	195.02140800	Right background: 197.86633300
Asymmetry (S_L):	0	Asymmetry (D_L): 0
U:	0	□ V: 0 □ W: 0.31175855 □
Z:	0	
Eta0:	0.0001	▼ X: 0 □
Peak H 1 🔽 40.30 2 🔽 41.39 Number of cycles:	Position 774310 426420 30 0K	Intensity Shift FWHM Shift eta 498.15774500 Image: Object to the state of the

Constant wavele	ngth data profile	refinement:		-							
Parameter	X	: 0.0000	00 0.	000000							
Scatt. Vari	lable	Background	Sigma	1							
38.	4500	184.1887	2.1	.392							
43.	1500	200.8363	2.1	.189							
Position	Sigma	Intensity	Sigma	Shf FWHM	Sigma	Shf Eta	Sigma	FWHM	Sigma	eta	
40.315678	0.001408	737.35	8.67	0.006986	0.004230	0.488205	0.028404	0.565339	0.004230	0.488305	0.0
41.393456	0.002117	342.73	8.13	-0.000860	0.005647	0.114697	0.062580	0.557493	0.005647	0.114797	0.0
Rp (%)	Rwp(%)	Rexp(%) C	hi2								
1.8	6.1	4.6516 1.73	565								
tput files:											
. ppso4_Pf	.new: inpu	t file with refi	ned parame	ters							
. pbso4_Pi	.out: summ	ary of the fitti	ing procedu	life							
											,

Profile fitting procedure

• Starting parameters of L.S. refinements ?

1. Select parameters with the mouse

2. Automatic search

- 3. From a .PIK input file
- 4. Single peak / doublet

2. Fitting procedure : automatic peak search

2. Fitting procedure : automatic peak search

WinPLOTR @ FPSchool, ILL, 21-26 Oct. 2019

Profile fitting procedure

• Starting parameters of L.S. refinements ?

1. Select parameters with the mouse

- 2. Automatic search
- 3. From a .**PIK** input file

4. Single peak / doublet

WinPLOTR

3. Fitting procedure : from . **PIK** input file

KEDIT - [D:\WinPLOTR\examples\pbso4_n.new] File Edit Actions Options Window Help - 8 × aQ 동물 문문 R -C1 continue ====> • * * * Top of File * * * => TITLE: pbso4 n.dat Ang_fin Nbac Npeak Ncyc Inte Inst Jobt Cont Weight Corr Constr ! Ang_init 44.0000 62.0000 2 11 10 0 6 2 0 0 0. 0 1.544330 <= Lambda1 & Lambda2 1.540560 Global Profile Parameters: 0.0000 0 <= Kalph2/Kalph1 ratio & Flag <= Asymmetry parameter1 & 0.0000 0 0.0000 <= Asymmetry parameter2 & 0 0.0860 <= Parameter U 1 -0.22901 <= Parameter V & ٤. 0.2540 1 <= Parameter W <= Parameter Z & 0.0000 0 0.1000 0 <= Parameter Eta0 ٤. 0.0000 <= Parameter X 0 Background Parameters: 2Theta/TOF/Energy Background Flag 44.0000 200.0000 1 62.0000 215.3333 1 Reflection Parameters: 2Theta/TOF/Energy Shift-FWHM Intensity Shift-Eta Flags 46.5785 450.5725 0.0000 0.0000 1 1 1 0 47.7482 129.3865 0.0000 0.0000 1 1 0 1 49.5211 342.3236 0.0000 0.0000 0 1 50.4567 248.8786 0.0000 0.0000 1 0 51.5505 548.4024 0.0000 0.0000 0 52.2982 848.1331 0.0000 0.0000 1 53.1669 320.1445 0.0000 0.0000 n. 1 54.9535 1134.3667 0.0000 0.0000 1 1 n. 56.0510 929.1931 0.0000 0.0000 1 1 n 1 57.8286 370.5429 0.0000 0.0000 1 1 1 n. 60.1728 73.4670 0.0000 0.0000 1 1 1 n. 149.170 Chi2 = * * End of File * * * × . \bigcirc Col=35 Alt=6,6;7 OVR R/W 12:17 Line=18 Size=32 Files=1 Windows=1

Profile fitting procedure

• Starting parameters of L.S. refinements ?

- 1. Select parameters with the mouse
- 2. Automatic search
- 3. From a .**PIK** input file
- 4. Single peak / doublet

WinPLOTR

. Starting parameters are detected automatically :

- . background points
- . single peak / doublet parameters : position, FWHM

Example: NdSrNi0.8Cu0.2O4 / RX-D500

. Automatic mode (Points selection / Automatic background):

- . Created from the pattern file
- . Number of points ~ SQRT(n), with a quasi uniform repartition on 2θ
- . Modify background (Points selection / Add /remove background points)
- . Save background points to paste into . PCR file for FullProf

>> Raw background for raw refinements (not recommanded for advanced analysis)

. Manual mode (Points selection / Select background points):

. Created from the data file or preferentially from the **. PRF** file

- . Number of points depends on peaks overlap, background modulations, ...
- . Modify backgrounds (**Points selection / Add / background points**)
- . Save background points to include into . PCR file for FullProf

>> Good starting points for **FullProf** refinements (Rietveld / profile matching (strongly recommended !)

Background points selection

WinPLOTR tools (Tools menu option)

- Space group informations :

- . features
- . symmetry operators
- . Wyckoff positions
- . extinctions

- (hkl) list generation in a given 2 θ range, from :

- . space group
- . unit cell parameters
- . wavelength
- unit cell volume calculation
- molecular weight calculation

Advanced use of WinPLOTR

Useful for repetitive actions :

- . Files convertion
- . Multi-scans UXD or XRDML file normalization
- . Change X space
- . Automatic single peaks/doublet profile fitting
- . Save graphics as bitmap or PostScript files

Use a command file, containing keywords and arguments:

- . **FILE** file%name file%format
- . SAVE_AS_XY, SAVE_AS_INSTRM_0
- . UXD_NORMA/XRDML_NORMA
- . SHIFT_X/SHIFT_Y shift_x/shift_y
- . **OFFSET_X/OFFSET_Y** offset_x/offset_y
- . MULTIPLY_X/MULTIPLY_Y mult_x/mult_y

Advanced use of WinPLOTR

Use a command file, containing keywords and arguments:

- . SUBSTRACT file 1 file 2 format
- . WAVE
- . TRANSF_X1_TO_X2 (2THETA / Q / STL / D / S)
- . FIT_SINGLE_PEAK xmin xmax
- . FIT_DOUBLET_CU/MO/CO xmin xmax
- . BITMAP / EPS

Launching **WinPLOTR** from the command line,

using a command input file

d:\data>winplotr command file.cmd

Example 1 : conversion of files

...

FILE data_file_001.uxd 9
SAVE_AS_XY
FILE data_file_002.uxd 9
SAVE_AS_XY

FILE data_file_455.uxd 9
SAVE AS XY

Launching **WinPLOTR** from the command line,

using a command input file

Example 2 : profile fitting

FILE ndsrni_rx.dat 1
FIT_SINGLE_PEAK 24. 25.
FILE ndsrni_rx_pf.xrf 100
BITMAP
PLOT

WinPLOTR

WinPLOTR : what's new ?

and the second se	
	WinPLOTR news? (ASCII format)
	WinPLOTR news? (HTML format) WinPLOTR news? (WinPLOTR web site)