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Progress in energy-related technologies demands new and improved materials

with high ionic conductivities. Na- and Li-based compounds have high priority in

this regard owing to their importance for batteries. This work presents a high-

throughput exploration of the chemical space for such compounds. The results

suggest that there are significantly fewer Na-based conductors with low

migration energies as compared to Li-based ones. This is traced to the fact that,

in contrast to Li, the low diffusion barriers hinge on unusual values of some

structural properties. Crystal structures are characterized through descriptors

derived from bond-valence theory, graph percolation and geometric analysis. A

machine-learning analysis reveals that the ion migration energy is mainly

determined by the global bottleneck for ion migration, by the coordination

number of the cation and by the volume fraction of the mobile species. This

workflow has been implemented in the open-source Crystallographic Fortran

Modules Library (CrysFML) and the program BondStr. A ranking of Li- and

Na-based ionic compounds with low migration energies is provided.

1. Introduction

The rechargeable Li-ion battery – with higher energy density

than its predecessors – has been a key technological enabler

for the rise of portable electronics. Most importantly, looking

ahead, battery technology offers great potential to enable a

future world powered by clean energy sources. From the

electrification of transportation (e.g. electric vehicles) to the

support of smart grids (e.g. storing wind and solar energy

produced during off-peak hours), rechargeable batteries are

called on to create a new energy paradigm. However, for this

scenario to materialize, advances beyond the current state of

the art in battery performance, safety and cost are necessary.

A salient goal of research in batteries is the discovery of

new materials or novel properties of existing compounds. In

this quest, the traditional approach is to focus on archetypal

compounds in which a desirable property was first observed,

stimulating further investigations. For example, many good Li-

ion solid electrolyte oxides and sulfides crystallize in a few

crystal structures: layered compounds (Mizushima et al., 1980),

olivine (Padhi et al., 1997), perovskites (Stramare et al., 2003),

NASICON-like (Martı́nez-Juárez et al., 1998) and LISICON-

like (Rodger et al., 1985) (i.e. resembling Na and Li super-ionic

conductors), garnets (Thangadurai et al., 2014), and argyrodite

(Deiseroth et al., 2008). Similarly, most Li-ion cathode mate-

rials belong to a handful of structural families (Whittingham,
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2004): layered oxides, spinel and olivine. Yet this trial-and-

error exploratory research based on extrapolating known

solutions to new compositional spaces has high demands in

terms of synthesis and characterization times that hinder the

emergence of new, compounds that do not fit the traditional

model.

To mitigate this issue and accelerate the process of materials

discovery, computational modelling is emerging as a powerful

complementary tool. Thanks to the proven predictive power

of quantum chemistry methods together with the spectacular

growth of computational resources, computer simulation is

nowadays able to bring valuable insight for understanding the

structure, properties and function of technological materials

(Hautier et al., 2012). In this regard, high-throughput

screening of materials databases using first-principles simula-

tion approaches has a demonstrated successful track record of

guiding advances in materials science [see Jain et al. (2016) for

a recent review], including areas as diverse as heterogeneous

catalysis (Greeley et al., 2002), bulk crystal structure predic-

tion (Curtarolo et al., 2003; Meredig & Wolverton, 2010) and

thermoelectricity (Carrete et al., 2014). In the domain of

batteries, first-principles simulations based on density func-

tional theory (DFT) have proven to be a useful method to

understand the mechanisms of electroactive materials (Meng

& Dompablo, 2009; Ceder, 2010; Islam & Fisher, 2014) and, in

combination with high-throughput searches, are widely viewed

as a promising approach to proposing new materials (Hautier

et al., 2011; Cheng et al., 2015; Qu et al., 2015; Kirklin et al.,

2013; Husch & Korth, 2015; Schütter et al., 2015; Borodin et al.,

2015; Kireeva & Pervov, 2017).

Armed with these theoretical methods, an effective assess-

ment of candidate materials first requires choosing relevant

screening criteria. Keeping in mind that the chief fundamental

process that enables the functioning of most of today’s

rechargeable batteries is the reversible insertion of ions into

solids, ionic conductivity emerges as a paramount criterion.

High ionic conductivity does not guarantee high electro-

chemical performance of the material, but it is a necessary

condition to screen out materials with unwanted slow kinetics.

The theoretical evaluation of ionic conductivities involves

identifying ion migration paths and computing their corre-

sponding energy barriers. These can be estimated from DFT

energy landscapes using transition state finders (such as the

nudged elastic band method) or by simulating the migration

by molecular dynamics (Deng et al., 2016, 2017). However, it is

unfeasible to tackle the study of ionic conductivity for the

high-throughput screening of tens of thousands of compounds

purely with DFT owing to the high computational cost of such

an endeavour. Instead, one alternative approach is to pre-

screen candidate materials by a less accurate but faster

method before undertaking detailed DFT calculations. The

bond-valence (BV) method (Brown, 2009) has become parti-

cularly appropriate for this task since Adams & Rao (2011,

2014) reworked it into an effective local force field by intro-

ducing a Morse-type potential together with a screened

Coulomb potential. With this approach, it is possible to sample

the bond-site energy of the mobile ion throughout the unit cell

in a few seconds. This enables the fast construction of bond-

valence energy landscapes (BVELs) and therefore direct

exploration of ion migration pathways, which can be visualized

as regions enclosed by energy isosurfaces. The threshold

energy (Eth) for which these isosurfaces start to percolate the

unit cell in at least one dimension can be taken, in general, as a

rough estimate of the activation energy for ion migration

(Em).

Despite the simplicity of the BV method, its straightforward

application to high-throughput schemes has some short-

comings. First, oxidation states, which are the main input of

the BV method, are not always specified for every entry of

common crystal structure databases such as the Inorganic

Crystal Structure Database (ICSD; http://www2.fiz-karlsruhe.

de/icsd_home.html). Second, although there is computer

software available to perform BVEL calculations [e.g.

BondStr within the FullProf suite (Rodriguez Carvajal, 1993);

see the manuals of the programs FormalCharges and BondStr

in the supporting information (SI), the determination of Eth

for each investigated compound usually requires tedious time-

consuming visual inspection of three-dimensional energy

landscapes. In order to facilitate this task, Sale & Avdeev

(2012) used the Materials Studio package (Accelrys, San

Diego, California, USA) to automate the determination of the

threshold energies by developing a computer program called

3DBVSMAPPER. This implementation has some practical

drawbacks though. For example, the user must specify the

oxidation states, and the program provides Eth but not the ion

migration energy (Em), which in some cases can differ from

Eth, as shown later. Finally, 3DBVSMAPPER depends on a

piece of proprietary software. 3DBVSMAPPER has been

applied to the screening of Li-, Na-, K-, Cu- and Ag-based

materials (Avdeev et al., 2012). More recently, some other

screening studies based on BV calculations have appeared,

using their own implementations and only focused on Li-

based materials (Gao et al., 2014; Xao et al., 2015; Xiao et al.,

2016; Nakayama et al., 2016). In all of these previous screening

studies, the goal was to identify new promising ion conductor

candidates. Despite the huge quantity of data that some of

these studies have generated, there has been no attempt to

carry out an exhaustive analysis of those data to understand

correlations between BV mismatches or BV energies and the

structural and chemical properties of the materials. This stands

in contrast with the importance of developing a fundamental

understanding to establish a universal guide for fast ion

conductors, whose lack was acknowledged, for instance, in a

recent review of solid electrolytes (Bachman et al., 2016). As

BV theory describes ion diffusion reasonably well and can

generate a lot of data in a very short time, it is an ideal tool to

address this question in a first approximation. The data

analysis can identify and quantify some of the fundamental Em

and crystal structure correlations, as well as providing a

quantitative understanding of the limitations of the BV theory

in describing ion diffusion in solids.

In this work we first report the technical details of the

automation of the BV calculations. We describe the two

algorithms required for the automation: (i) the automatic
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assignment of oxidation states given the

crystal structure and (ii) the determi-

nation of the threshold value at which

the energy isosurface starts to percolate

the unit cell and the correction required

in the cases where Eth does not equal

Em. These algorithms have been

implemented using CrysFML (https://

forge.epn-campus.eu/projects/crysfml),

an open-source library of Fortran

modules (see the program manuals in

the SI) which is widely used in crystal-

lographic applications. The metho-

dology described is then used to scan Li

and Na compounds from the ICSD. We

provide a ranking of compounds classi-

fied as a function of their computed Em.

The correlation between Em and the

crystal structure is studied by

computing the correlation factors

between Em and a broad range of

simple structural descriptors. To this

end, we show that the bottleneck of the

ion diffusion path can be retrieved even more easily just by

using a simple hard-sphere model, with the same methodology

being used to compute Eth. In addition to the bottleneck, we

introduce several structural descriptors derived from a

Voronoi partition of the crystal space. Additionally, we use

machine learning to evaluate the predictive capabilities of the

structural descriptors used in this work. Finally, we focus on

those descriptors that are more strongly correlated with Em

and we show that they take rather unusual values for the best

Na-ion conductors, contrary to what is observed in the Li case.

2. Methods

2.1. BV calculations

BV calculations are carried out using the program BondStr

(https://forge.epn-campus.eu/projects/crysfml/repository/show/

Program_Examples/BondStr), built with CrysFML. This code

implements the BV-based force-field approach developed by

Adams & Rao (2014). For oxide compounds, we use the

Morse-type potential parameters supplied by those authors.

The parameters for the remaining compounds are derived

from the softBV model (Adams, 2001; Chen & Adams, 2017).

BVELs are computed using a grid resolution of 0.1 Å. This

choice ensures an energy convergence of a few hundredths of

an electron volt. As is discussed in Section 3, this energy is

small compared with the expected overestimation of the

diffusion energy barrier by this approximation. The BV cut-off

radius is set to 8 Å. In order to automate the BV calculations,

we have implemented the following two tasks in CrysFML.

2.1.1. Assignment of oxidation states. We have developed

an algorithm based on a BV sum (BVS) approach, which is

sketched in Fig. 1. The algorithm is implemented in the

program FormalCharges (see the manual in the SI). After

reading the crystal structure, the program loads the possible

valences for each element of the structure. As this algorithm is

devised to be used in the framework of BV theory, the

available valences for each element of the periodic table are

those for which a BV parametrization exists. Elements with

only positive oxidation states are automatically classified as

cations. If negative oxidation states are possible, they are

classified as potential anions in a first stage. In a second stage,

first nearest neighbours are computed. When a cation and

potential anion pair is found, the potential anion is confirmed

as such. If a potential cation–anion pair is found, the atom with

lower (higher) electronegativity is classified as cation (anion).

If anion–anion or cation–cation pairs are confirmed, the

algorithm stops and no assignment of oxidation states is done.

In the next step, all possible combinations of atomic valences

are computed, and those, if any, which fulfil electroneutrality

are selected. Finally, if more than one electroneutral combi-

nation has been found, the more plausible combination is

chosen. A quantitative measurement of this plausibility is

given by the absolute BV sum mismatch (�V) (Brown, 2009),

defined as

j�Vj ¼
P
M

P
X

sM�X � VidðMÞ

����
����; ð1Þ

where M runs over all the ions of the system, X runs over all

adjacent counter-ions of M, sM�X is the predicted bond

valence for the M—X bond and Vid is the nominal valence of

ion M. This quantity measures the deviation of the predicted

valences from the nominal valences. The lower the absolute

BV sum mismatch, the more plausible is the combination.

Therefore, the combination with the lowest BV mismatch is

selected.

2.1.2. Calculation of Eth and Em. Eth is the energy at which

the isosurface corresponding to the bond-site energy of the
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Figure 1
Flowchart of the algorithm used to assign oxidation states.



mobile ion starts to percolate the unit cell. The percolation of

an isosurface through a parallelepiped can be easily analysed

by using graph theory. To this end, the isosurface is computed

by using the marching cubes algorithm (Lorensen & Cline,

1987), which builds the isosurface as a triangular mesh. The

vertices and sides of the triangular mesh are considered as the

nodes and edges of the graph. The percolation algorithm

proceeds in two steps. First, it extracts the connected

components of the graph without applying periodic boundary

conditions (PBC). A connected component is an equivalence

class with respect to the relation of mutual accessibility. They

are extracted using a depth-first search algorithm (Cormen et

al., 2009). In the second step, PBC are applied. The number of

connected components usually decreases with the addition of

new bonds between different images of the cell. Those final

connected components are analysed to check if at least one of

them percolates the unit cell. If there is percolation, then there

must be a sequence of bonds connecting two nodes related by

translational symmetry. Fig. 2 sketches how the algorithm

works in the particular case of two dimensions. The migration

energy, Em, corresponds to Eth minus the lowest energy point

of the migration path. Previous screening tacitly assumed the

equivalence between Eth and Em. This is generally true

because the mobile ion is usually located at the absolute

minimum site energy. However, there are cases where this

equivalence does not hold, such as for example compounds

where the mobile ion can be located at several crystal-

lographic sites but not all of these sites participate in the ionic

diffusion. Li10GeP2S12 (Kamaya et al., 2011), one of the best

Li-ion conductors, is a paradigmatic example. In this

compound, the Li atoms are located at 4c, 4d, 8f and 16h

Wyckoff positions, with bond-site energies E4c, E4d, E8f and

E16h of 0.75, 0.00, 0.71 and 0.54 eV, respectively (E4d corre-

sponds to the absolute minimum of the energy and it is taken

as reference). Eth is 0.97 eV. As only the 8f and the 16h sites

are involved in Li diffusion and 16h has lower energy, if we

approximate the lowest energy of the diffusion path by the site

energy of the 16h position, Em is Eth � E16h = 0.43 eV, i.e.

0.59 eV lower than Eth. We have therefore included this

correction in our screening. We notice that in a few cases the

correction is quite large, around 1 eV or even greater. In these

cases, there is usually a disagreement between the reported

atomic coordinates for the alkali atoms and the coordinates

predicted by BV theory.

2.2. Compound selection

In this work, we screen the 2013 release of the ICSD. We

initially considered all Li and Na entries of the database, 7283

and 12 065, respectively. However, since we seek stable

compounds under ambient conditions, high pressure and/or

high temperature, structural data were disregarded.

Compounds with hydrogen were also excluded because the

experimental structural data are often unreliable. In addition,

for the sake of simplicity, we do not consider compounds with

partial occupancies on atomic sites that do not correspond to

the mobile species. The assignment of oxidation states is

carried out after this filtering. The number of Li and Na entries

with a successful assignment of oxidation states is 2043 and

2736, respectively. The last step involves removing duplicate

crystal structures. Two entries are considered to correspond to

the same crystal structure if both the chemical formula and the

space group are identical. In the cases where there is more

than one entry for a crystal structure, we select the entry with

the lowest global instability index (GII) (Salinas-Sánchez et

al., 1992). This index is defined in the framework of the BV

theory to quantify the degree to which the atomic structure as

a whole is strained. In stable, well determined structures, the

GII is usually less than 0.1 valence units. Values between 0.1

and 0.2 indicate a strained structure, whereas higher values are

unusual and can point to an incorrect structure determination.

The GII is also computed with BondStr. After removal of

duplicate entries, the number of Li and Na compounds is 1025

and 1477, respectively.

2.3. Structural descriptors and machine-learning analysis

Every compound has been characterized by several struc-

tural descriptors in order to establish correlations between Em

and the crystal structure. The short-range order of the crystal

is characterized by structural descriptors that are derived from

a Voronoi partition (Blatov, 2007) of the crystal space. This

partition provides an unambiguous definition of the coordi-

nation number, free of any arbitrariness such as, for example, a

cut-off bond distance. This partition encloses every atom in

the convex polyhedron defined by the set of points closer to it

than to any other atom. By construction, the normal of each

face of the polyhedron points to a neighbouring atom. The

coordination number N is then defined as

N ¼
X

i

�i

�max

; ð2Þ

where i runs over all faces of the polyhedron and �i is the solid

angle subtended by the face i. The face with the largest solid
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Figure 2
Percolation algorithm steps in two dimensions. Left: isoline identification.
Middle: extraction of connected components (in colour) without PBC.
Right: connected components after applying PBC. Top: isolines crossing
unit-cell boundaries without percolation. Bottom: isolines crossing unit-
cell boundaries with percolation.



angle, �max, is used to normalize this angle. The volume of the

corresponding polyhedron gives the size of each atom. When

analysing ion diffusion, it is also essential to have long-range

order descriptors in order to describe the diffusion channels.

For this reason, we have developed a descriptor that quantifies

the size of the open channels inside the crystal structure. We

call this new descriptor the percolation radius, rp, which we

computed from a hard-sphere model as follows. Firstly, we

remove the mobile ion from the crystal structure. Then, the

remaining ions are considered as hard spheres with a size

determined by the ionic radius. We have used the ionic radii

tabulated in CrysFML, which correspond to the Pauling ionic

radius. In close analogy with BVEL calculations, the unit cell is

mapped by computing, on a fine grid, the maximum radius of a

hard sphere that does not overlap with any atomic sphere of

the crystal (Fig. 3, left). The isosurface corresponding to an

arbitrary radius, r, encloses all the points for which the point–

ion distance is equal to or greater than r. If the isosurface

percolates the unit cell, it means that there is a path across

which a sphere of radius r can traverse the unit cell without

overlapping with any atomic sphere. The threshold value at

which the isosurface stops percolating is rp, which corresponds

to the maximum radius of a sphere that can percolate the

crystal structure considered as an arrangement of hard

spheres. rp corresponds strictly to the bottleneck of the

migration path in a hard-sphere model, and provides a

quantitative characterization of the open channels through

which the mobile ion can diffuse. In Fig. 3 (right), we compare

the calculated energy and radius isosurfaces at their threshold

values for a well known ionic conductor, NASICON (Rodger

et al., 1985). The computed diffusion paths and the hard-

sphere model agree well. In the next section, we demonstrate

that there is a very strong correlation between Em and rp,

which suggests that rp is a good estimation of the bottleneck of

the diffusion path predicted by the BVEL calculation.

However, as relaxation effects are absent in this approxima-

tion, rp cannot be linked directly to the bottleneck of the real

diffusion path, where anions must move apart from the Li

(Na) diffusion ion at the bottleneck. One of the consequences

of neglecting relaxation effects is the overestimation of the

activation energy. These effects are taken into account by

more accurate approximations based on first-principles

calculations. In spite of not considering the dynamics of the

crystal structure, the BVEL method is still able to provide the

correct migration path in many situations. In the SI we

compare ab initio with BVEL calculations for the diffusion of

Na ions in the layered oxide Na2/3Mn1/3Fe2/3O2 (Katcho et al.,

2017). We show how the BVEL method predicts correctly the

Na migration path, which depends on the local Na arrange-

ment.

To build a regression model connecting our set of descrip-

tors with the target property of ion migration energy, we resort

to the machine-learning technique known as random forests

(Breiman, 2001). More specifically, we employ the imple-

mentation found in scikit-learn (Pedregosa et al., 2011). The

method is based on an ensemble of decision trees, each of

which is trained on a different set of compounds, sampled at

random with replacement from the input set. Each tree is a

complete hierarchy of splits based on the values of different

sets of descriptors. While the tree is growing, the set of

descriptors used for each split is sampled at random, but then

the splitting criterion is optimized to minimize the mean-

square error. The training phase of the method ends when the

predefined number of trees have been grown. To extract a

prediction for an arbitrary compound from the model, its data

are run down each individual tree and the results are aver-

aged. Among the advantages of random forests with respect to

other regression techniques, crucial to us is the fact that they

work well even when the input contains correlated descriptors,

as in our case. Another interesting feature is that they provide

a built-in method to assess the importance of each descriptor,

based on the average reduction in variance. To do this, we

compute the reduction in total variance between each parent

node and the set of its children, and then average this
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Figure 3
Left: two-dimensional hard-sphere model. Filled circles represent atoms. Empty circles define the maximum radius of a circle that does not overlap with
any atom. The radius of the smallest red circle corresponds to the percolation radius. Right: BV (left) and radius (right) isosurfaces corresponding to the
percolation energy and the percolation radius in NASICON.



reduction over all splits involving the descriptor under study,

weighting each split by the fraction of compounds in the node.

This per-tree importance is then normalized over all features

and averaged over all trees in the forest. To avoid overfitting,

we randomly choose 50% of the compounds for training the

model and reserve the other 50% for validation. Another

important detail of our specific application is our choice of

log(Em) instead of Em itself as the target variable. The preci-

sion and accuracy of predictions in a certain subinterval is

affected by the density of values from the training set in that

subinterval. By applying monotonic transformations to the

predicted variable, we can achieve different tradeoffs between

homogeneous predictive power across the board and focus on

a particular range of values. Given the very inhomogeneous

distribution of our training data, we settled on using the

logarithm to avoid large differences in accuracy and precision

in different subintervals. We must point out, however, that this

choice does not affect the results on a qualitative level.

3. Results and discussion

Initially we compute Em for every selected Li and Na

compound. We start a coarse search for Em by applying the

percolation algorithm to the isosurface with E = 1 eV. If there

is no percolation, we increase E by steps of 1 eV until perco-

lation is found. We do not search for percolation at energies

larger than 5 eV. Then, Em is refined by using energy steps of

0.1 and 0.01 eV consecutively. The results are summarized in

Fig. 4, which shows the histograms of the number of scanned

compounds as a function of Em. The histograms for both Li

and Na compounds have a similar shape. At low energies, the

density of compounds increases with energy. There is a

maximum around 1 eV, followed by a monotonic decrease of

the density of compounds. It is well known that the BVEL

method overestimates Em. Scaling factors of about 0.9 for

network structures and 0.45 for interlayer paths in layered

structures have been proposed (Adams & Rao, 2014). Xao et

al. (2015) report an extensive comparison between ab initio

and BVEL migration energies for a wide range of families of

compounds, such as olivine, spinel, layered, borates/carbo-

nates, antiperovskite, phosphates, sulfates and tavorite. In

general, the scaling factor ranges from 0.3 to 0.7. Even inside a

given family, the dispersion of the scaling factors can be quite

large. For Li compounds, a reasonable choice for an upper

limit of the activation energy is 0.5 eV (Bachman et al., 2016).

In the Na case, �-alumina and NASICON also have activation

energies well below 0.5 eV (Lu et al., 2010; Park et al., 2016). If

we combine this upper limit with the expected scaling factors

for the energies predicted by the BVEL method, it should be

expected that BVEL calculations will provide Em < 1.5 eV for

any fast ion conductor. A complete ranking of Li and Na

compounds with Em less than 5 eV is provided in the SI.

Compounds with large Em are impermeable to Li (Na)

diffusion and could serve as blocking electrodes.

In order to go beyond the simple generation of a ranking of

compounds, we have analysed the correlations between Em

and the crystal structure as well. To this end, we compare

compounds with the same type of anion, since the nature of

the anion is an important parameter affecting Em. We focus on

lithium and sodium oxides because they provide good statis-

tics as there are a large number of compounds belonging to

this family in the ICSD. Each compound is characterized by

the following descriptors: the cation site energy (Esite), the

cation BVS, the cation–cation and cation–anion coordination

numbers (N) calculated following equation (2), the migration

energy (Em), the Voronoi polyhedron volume (V) of the cation

and the anion, the cation and anion volume fractions (fV), the

density of the compound (�), and the computed percolation

radius (rp). The BVS is the predicted valence for the ion [first

term of the right-hand side of equation (1)]. Correlations are

quantified by computing the Spearman correlation coefficient

between each pair of descriptors. Fig. 5 displays the correlo-

grams for lithium and sodium oxides. The two correlograms

are qualitatively similar. There is a clear negative correlation

between Em and rp, Ncation–cation, fVcation, Vcation and Esite, and a

positive correlation with Ncation–O, fVO and BVS. The negative

correlation between Em and rp was expected. As we have

described in Section 2, rp measures the bottleneck of the

diffusion channel. An increase of rp reduces the repulsive

forces at the bottleneck and, therefore, this reduces Em. The

negative correlation with Vcation has the same origin. Indeed, it

can be seen that Vcation and rp are strongly and positively

correlated. Ncation–cation is greater than zero when the poly-

hedra of the two cations share one face. This situation should

be expected when fVcation is large. This is confirmed by the

correlation coefficient between fVcation and Ncation–cation, which

is large and positive. Increasing fVcation implies a larger

accessible volume for the diffusion of the cation and, in

general, this is accompanied by a decrease of Em. This explains

the negative correlation coefficient between Em and fVcation

and Ncation–cation. The last descriptor with a clear negative

correlation with Em is Esite. Long (strained) bonds are

expected to have smaller potential wells, lowering the diffu-

sion energy barrier. Especially in the case of Na compounds,

this is reflected by the strong positive correlation with BVS.

Na ions with predicted valences lower than 1, pointing to long

bond distances (i.e. local tensile strain), have lower Em in

general. Finally, Ncation–O is positively correlated with Em, i.e.

structures with low coordination numbers have generally

lower ion diffusion barriers. Interestingly, we show at the end
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Figure 4
Number of scanned compounds as a function of Em. Left: Li compounds.
Right: Na compounds.



of this section that one of the best Na-ion conductors,

�-alumina, deviates from this rule by compensating a large

Ncation–O with a very large rp.

We also found that, from a quantitative point of view, the

influence of the crystal structure on Em seems to be larger in

the case of Na compounds, since the correlations are clearly

stronger. However, as many of the structural data of the ICSD

come from X-ray experiments, which are not well suited for

locating light elements such as Li, this conclusion should be

treated with caution. The weaker correlations found in the Li

case could also be explained by a loss in accuracy of the atomic

coordinates of Li compared with Na, which can blur the

correlations. To minimize the risk of dealing with not well

determined crystal structures, we have only considered those

crystal structures with GII less than 0.5.

In Fig. 6, we again summarize the results of the scan of the

ICSD, but now by plotting Em as a function of the descriptor

with the strongest correlation, i.e. rp. Compounds are classified

according to the nature of the anion: oxides (O2�), sulfides

(S2�), nitrides (N3�), chalcogenides (Se2�, Te2�), halides (F�,

Cl�, Br�, I�) and oxyhalides (O2� + F�/Cl�/Br�/I�). The

negative correlation between Em and rp is clearly shown,

although in the lithium case, especially for oxides, we observe

a larger dispersion of the data. As a consequence of this

negative correlation, rp imposes a lower limit to Em for a given

rp. In the lithium case, it can be observed that up to ca 0.5 Å

the lowest value taken by Em as a function of rp decreases

monotonically. In this region, the channel size is too small for

an Li ion, and an increase in rp decreases Em because it

reduces the repulsive forces at the bottleneck. For rp greater

than 0.5 Å, there is no further decrease of Em. The channel

size starts to become too large for the Li ion, increasing the

potential well. In the sodium case, trends are similar although

some differences can be observed. Obviously, the data are

shifted to larger rp values since the Na ion is larger than the Li

ion. In addition, the data can easily be clustered by families.

For oxides, the monotonic decrease of Em stops around 0.9 Å,

whereas for sulfides, chalcogenides and halides it stops around

0.7 Å. Oxyhalides are located between these two sets.

A machine-learning regression of Em results for lithium and

sodium oxides was carried out following a strategy of recursive

feature elimination. We find that reasonably good predictions

are obtained by using only the following three structural

descriptors: rp, Ncation–O and fVcation (Fig. S1 in the SI). As the

correlation between the crystal structure and Em is clearly
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Figure 6
Migration energy as a function of the percolation radius. Top: Li
compounds. Bottom: Na compounds.

Figure 5
Correlograms between the ion migration energy Em, the cation bond-valence sum BVS, the cation site energy Esite, the cation–cation and cation–anion
coordination numbers Ncation–cation and Ncation–O, the Voronoi polyhedra of the anion and cation, VO and Vcation, the anion and cation volume fractions,
fVO and fVcation, the density �, and the percolation radius rp. Left: Li compounds. Right: Na compounds. The data corresponding to this figure are
provided in the SI.



stronger for Na compounds, the corresponding prediction

results are also better. The inclusion of more descriptors does

not improve the prediction. Therefore, a significant improve-

ment requires the introduction of new structural descriptors.

The descriptors derived from a Voronoi partition of the crystal

space can describe well the initial and final states of the

hopping, but not the transition state. Notice that rp provides

some information about the transition state since it provides

the size of the bottleneck, which is usually located at the

transition state. However, information about the coordination

of the ion at the bottleneck is missing. We therefore argue that

an improvement of the description of the transition state

should lead to improved predictions.

Finally, we focus on the structural properties of some of

the best Li- and Na-ion conductors. For Li-based compounds,

we have selected one member of each representative family

of fast Li-ion conductors: LISICON-like (Li10GeP2S12),

NASICON [LiTi2(PO4)3], garnet (Li7La3Zr2O12), perovskite

(Li0.3La0.567TiO3) and argyrodite (Li6.72PS5Cl). For Na-based

compounds, we have taken as representative examples

NASICON (Na3Zr2Si2PO12) and �-alumina [Na2O(Al2O3)11].

We investigate how some of their structural descriptors

compare with the rest of the Li- and Na-based compounds.

Fig. 7 displays the number of scanned compounds as a function

of Ncation–O and rp. The values of the reference compounds are

also included. The distribution corresponding to Ncation–O is

bimodal in the lithium case, with peaks at NLi–O = 4 (tetra-

hedral coordination) and NLi–O = 6 (octahedral coordination).

In the sodium case, there is only one clear peak, located at

NNa–O = 6. Yet the most important difference between lithium

and sodium plots is observed when we look at the reference

compounds. Fast Li-ion conductors have the typical coordi-

nation numbers of lithium compounds, between 4 (LISICON-

like, garnet, argyrodite) and 6 (perov-

skite, NASICON). However, the best

two Na-ion conductors – NASICON

and �-alumina – have much larger

coordination numbers than the usual

values found for sodium compounds. In

particular, �-alumina has the largest

coordination number of all scanned

sodium compounds. It is important to

keep in mind that these coordination

numbers are derived from a Voronoi

partition of the crystal space, so they

may not coincide with more traditional

coordination numbers derived from

more arbitrary coordination polyhedra.

In �-alumina, sodium ions are located

at the centre of an antiprism-shaped

first coordination shell. Therefore, the

traditional coordination number is six

(six Na—O distances of 2.83 Å).

However, there are another three close

oxygen anions – the second coordina-

tion shell – located at a distance of

3.23 Å which are still ‘visible’ (i.e.

subtend a nonzero solid angle) in the Voronoi sense and that

we therefore consider as neighbours. The same trends are

observed when looking at rp. Again, fast Na-ion conductors

have unusually large rp values, whereas in the lithium case the

reference values are located in a region of high density of

compounds. The rp values for the reference Li-ion conductors

with lithium in a tetrahedral environment are well below

0.5 Å, the channel size from which BV theory predicts the

lowest energy diffusion barriers (see Fig. 6). This discrepancy

can be understood by the absence of relaxation effects of the

crystal structure in our BV approach, which favours more

open crystal structures. On the sodium side, the very large rp

values of fast Na-ion conductors may be surprising since one

could expect large potential wells arising from large channel

sizes and, in consequence, high energy barriers. However,

these large sizes are accompanied by unusually large coordi-

nation numbers, which limits the depth of the potential well.

Indeed, when we look at the number of compounds as a

function of the Ncation–O/rp ratio (Fig. S2 in the SI), we observe

that the best ionic conductors for Na, as well as Li, lie in the

region where the density of compounds is largest.

4. Summary and conclusions

In this work, we have reported an automated scheme to

calculate Em using BV theory in its version based on Morse

and screened Coulomb potentials. This methodology has been

implemented in the program BondStr, based on the open-

source library CrysFML. In addition, we have shown that by

using a simple hard-sphere model the same mathematical

approach used to compute Em can be used to retrieve the

bottleneck of the diffusion path. This can find application in

the analysis of the influence of topology in atomic transport in
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Figure 7
Number of compounds as a function of the cation coordination number and percolation radius. Top:
Li compounds. Bottom: Na compounds.



solid-state problems in ordered and, in principle, also disor-

dered systems.

We have scanned 1025 Li and 1477 Na compounds of the

ICSD. We report a ranking of Li and Na compounds with Em

lower than 1.5 eV, which can stimulate further experimental

studies and theoretical investigations based on approxima-

tions that are more accurate. We have analysed the correla-

tions between Em and the crystal structure. A machine-

learning analysis reveals that Em is mainly determined by the

bottleneck and the coordination polyhedron and volume

fraction of the mobile species. However, our machine-learning

prediction is not accurate enough to yield quantitative accu-

racy. We attribute this fact to an incomplete description of the

transition state by the structural descriptors used in this work.

Descriptors accounting for the relative orientation and

distance between the coordination polyhedra involved in the

hopping of the Li (Na) ion would improve the description of

the transition state. On the other hand, our set of descriptors is

mainly intended to provide a good description of the local

atomic environment of the mobile species. In the case of

multivalent mobile species, long-range electrostatic cation–

cation repulsions could be more relevant. In this case, our

short-range description would probably be insufficient, and

additional descriptors characterizing interactions on a longer

range would be required.

The correlation between Em and the crystal structure is

stronger for Na compounds. In particular, for Na oxides we

find that the correlation factor between Em and rp is clearly

larger than for Li oxides, which suggests that the size of the

diffusion channel plays a more decisive role in Na-ion

conductors. This is consistent with experimental observations.

In contrast to what is observed for Li compounds, the best Na-

ion conductors present unusually large diffusion channels,

which are compensated by large coordination numbers. This

suggests that fast Na-ion conductors could be outliers whose

favourable properties stem from an unusual combination of

factors, which would imply that the number of fast Na-ion

compounds is significantly lower than the number of fast Li-

ion conductors.
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