

Electric Monopole Transitions in ⁷⁴Se

Naomi Marchini University of Florence – INFN Florence section

EO Transitions

- E0 transitions are determined by a change in the radial distribution of the electric charge inside the nucleus, and high E0 strength is expected whenever configurations with different meansquare charge radii mix
- Enhanced monopole strength may be considered as a "signature" for shape coexistence

• Simple two levels mixing model:

Naomi Marchini - CGS17 - Grenoble - 18th July 2023

⁷⁴Se - Physics case

J. Döring *et al* Phys. Rev. C 57, 2912–2923 (1998)

Naomi Marchini - CGS17 - Grenoble - 18th July 2023

⁷⁴Se - Physics case

J. Döring et al Phys. Rev. C 57, 2912–2923 (1998)

E. A. McCutchan et al Phys. Rev. C 87, 014307 (2013)

Naomi Marchini - CGS17 - Grenoble - 18th July 2023

⁷⁴Se - Physics case

J. Döring et al Phys. Rev. C 57, 2912–2923 (1998)

E. A. McCutchan et al Phys. Rev. C 87, 014307 (2013)

In this interpretation are expected:

- Strong $\rho^2(E0; 0_3^+ \to 0_2^+)$
- Negligible $\rho^2(E0; 2_2^+ \rightarrow 2_1^+)$

Naomi Marchini - CGS17 - Grenoble - 18th July 2023

Experimental setup:

- Si(Li) detector (5cm² X 6mm) resolution (FWHM) ~2.5 keV for 1 MeV electrons
- Sector shaped uniform field magnetic spectrometer
- different magnetic field settings imply different range of transmitted electron energy
- overall efficiency ~ 1% in the 150-1500 keV energy range
- HPGe Detector

- ⁶⁰Ni(¹⁶O,pn) @ 45 MeV
- ⁷⁴Br g.s. EC+ β ⁺ decay in ⁷⁴Se with τ = 35m

- ⁶⁰Ni(¹⁶O,pn) @ 45 MeV
- ⁷⁴Br g.s. EC+ β^+ decay in ⁷⁴Se with τ = 35m

- ⁶⁰Ni(¹⁶O,pn) @ 45 MeV
- ⁷⁴Br g.s. EC+ β^+ decay in ⁷⁴Se with τ = 35m

- ⁶⁰Ni(¹⁶O,pn) @ 45 MeV
- ⁷⁴Br g.s. EC+ β^+ decay in ⁷⁴Se with τ = 35m

- ⁶⁰Ni(¹⁶O,pn) @ 45 MeV
- ⁷⁴Br g.s. EC+ β^+ decay in ⁷⁴Se with τ = 35m

⁷⁴Se - Theoretical Interpretation

First BMF calculations for the ⁷⁴Se isotope

Naomi Marchini - CGS17 - Grenoble - 18th July 2023

⁷⁴Se - Theoretical Interpretation

First BMF calculations for the ⁷⁴Se isotope

Observable	Exp.	Vibr.	BMF	Nomura et al.
$B(E2; 2_1^+ \to 0_1^+)$ [W.u.]	42.0(6)		68	42
$B_{rel}(E2;4^+_1 \rightarrow 2^+_1)$	1.90(2)	2	1.69	1.88
$B_{rel}(E2; 0^+_2 \to 2^+_1)$	1.83(2)	2	0.94	1.50
$B_{rel}(E2; 2^+_2 \rightarrow 2^+_1)$	1.12(10)	2	1.47	0.16
$B_{rel}(E2; 2^+_2 \rightarrow 0^+_2)$	0.08(11)	0	0.19	0.52
$B_{rel}(E2; 6_1^+ \to 4_1^+)$	1.71(6)	3	2.27	2.14
$\rho^2(E0; 0^+_2 \to 0^+_1) \cdot 10^3$	25(3)	0	154	23
$\rho^2(E0; 2^+_2 \to 2^+_1) \cdot 10^3$	210(130)	0	26	4.9

K. Nomura et al., Phys. Rev. C 106 (2022) 024330

⁷⁴Se - Theoretical Interpretation - BMF

<u>First BMF calculations for the ⁷⁴Se isotope:</u>

- the ground-state band built on top of the triaxial minimum, characterized by mixing with an oblate configuration in the ground state
- the band built on top of the triaxial 2₂⁺ state associated with the ground-state band
- the band built on the 0₂⁺ state with strong mixing of the oblate and triaxial configurations
- the band built on the 0₃⁺ state with strong mixing of the prolate and triaxial configurations

Conclusions

Electric monopole transition strengths in the ⁷⁴Se isotope has been deduced:

- The obtained $\rho^2(E0;2_2^+ \rightarrow 2_1^+)$ value points out enhanced electric monopole transition between the 2_1 and 2_2 states as for the Ni isotopic chain
- The upper limit deduced for the electron intensity of the $0_3^+ \rightarrow 0_2^+$ transition is not in agreement with the explanation of the 0_2^+ state strongly mixed with the 0_3^+ state.
- The BMF calculations generally reproduce the experimental quantities, except for the $\rho^2(E0)$ values.
- The 0_2^+ state is interpreted as a shape coexisting state in the calculations, and the 2_2^+ state is the head of another band at low excitation energy.

Conclusions

- Electric monopole transition strengths in the ⁷⁴Se isotope has been deduced:
- The obtained $\rho^2(E0;2_2^+ \rightarrow 2_1^+)$ value points out enhanced electric monopole transition between the 2_1 and 2_2 states as for the Ni isotopic chain
- The upper limit deduced for the electron intensity of the $0_3^+ \rightarrow 0_2^+$ transition is not in agreement with the explanation of the 0_2^+ state strongly mixed with the 0_3^+ state.
- The BMF calculations generally reproduce the experimental quantities, except for the $\rho^2(E0)$ values.
- The 0_2^+ state is interpreted as a shape coexisting state in the calculations, and the 2_2^+ state is the head of another band at low excitation energy.
- <u>A more complex shape coexistence and mixing scenario is pictured for ⁷⁴Se at low-</u> <u>excitation energy</u>
- Further measurements of B(E2) and ultimately the determination of quadrupole invariants via low-energy Coulomb excitation are needed

Thank you for the Attention

Emergence of triaxiality in ⁷⁴Se from electric monopole transition strengths

N. Marchini^{a,b,c,*}, A. Nannini^a, M. Rocchini^a, T.R. Rodríguez^d, M. Ottanelli^a, N. Gelli^a, A. Perego^{a,b}, G. Benzoni^e, N. Blasi^e, G. Bocchi^e, D. Brugnara^f, A. Buccola^{a,b}, G. Carozzi^{f,g}, A. Goasduff^f, E.T. Gregor^{f,1}, P.R. John^{g,h}, M. Komorowskaⁱ, D. Mengoni^{g,h}, F. Recchia^{g,h}, S. Riccetto^{j,k,2}, D. Rosso^f, A. Saltarelli^{c,j}, M. Siciliano^{f,g,3}, J.J. Valiente-Dobón^f, I. Zanon^{f,g}

^a INFN Sezione di Firenze, Firenze, IT-50019, Italy

^b Università degli Studi di Firenze, Dipartimento di Fisica, Firenze, IT-50121, Italy

^c Università degli Studi di Camerino, Dipartimento di Fisica, Camerino, IT-62032, Italy

^d Departamento de Estructura de la Materia Fisica Termica y Electronica and IPARCOS, Universidad Complutense de Madrid, Madrid, E-28040, Spain

e INFN Sezione di Milano, Milano, IT-20133, Italy

^f INFN Laboratori Nazionali di Legnaro, Padova, IT-35020, Italy

^g Università degli Studi di Padova, Dipartimento di Fisica, Padova, IT-35122, Italy

^h INFN Sezione di Padova, Padova, IT-35122, Italy

ⁱ Heavy Ion Laboratory, University of Warsaw, Warszawa, PL-02-093, Poland

^j INFN Sezione di Perugia, Perugia, IT-06123, Italy

^k Università degli Studi di Perugia, Dipartimento di Fisica e Geologia, Perugia, IT-06123, Italy