

Lifetime measurements after neutron-induced fission using the FIPPS instrument at ILL

Giacomo Colombi

Caterina Michelagnoli (ILL) Silvia Leoni (UniMi) Joa Ljungvall (IJCLab Orsay) Jérémie Dudouet (IP2I Lyon)

CGS17 – July 18th, 2023

The FIPPS instrument at ILL

FIssion Product Prompt gamma-ray Spectrometer

- 8 Compton suppressed HPGe clover detectors
- Pencil-like (d=15mm) thermal neutron beam, with a flux of 10⁸ n s⁻¹ cm⁻² at target position
- Possibility to add ancillary devices (LaBr₃, HPGe clovers...)

G. Colombi et al., Paper in preparation

The active fission target

- Campaign at FIPPS in 2018 (~32 days)
- Suppress γ -ray induced β background •
- Actinide material dissolved in liquid scintillator
- 97.8(25)% fission tagging efficiency

10⁶ 0.8 10⁵ E^{0.6} 104 PSD 0. 10^{3} 10² 10¹ 50 100 Cts (10⁶) 15 (10°) Cts 3000 4000 5000 6000 2000 1000 Q_{tot} (a.u.) I – Fission events II – Electron events F. Kandzia *et al.*, Eur. Phys. J. A 56, 207 (2020)

Pulse shape discrimination

Doppler broadening of the gamma-ray peak following the de-excitation of the slowing down fission fragment (active target)

→ Triple gate to have major selectivity

Input for Geant4 simulations:

- Full FIPPS+IFIN-HH array
- Target cell geometry
- Validated stopping power
- Use FIFRELIN to describe fission
- Full gamma de-excitation (ENSDF)

G. Colombi *et al.*, Paper in preparation

FIFRELIN calculations

FIssion FRagment Evaporation Leading to an Investigation of Nuclear data

- Developed by CEA Cadarache
- Monte Carlo simulation
- Inputs: mass and K.E. distribution before neutron emission
- Evaluation of the repartition of the excitation energy between the fragments
- Fission fragment database with (A, Z, K.E., E*, J, π)

100Zr: 8⁺ → 6⁺

G. Colombi et al., Paper in preparation

Ongoing analysis of Zr and Nb isotopes

101Zr: 21/2+ → 19/2+

FOR SOCIETY

Energy loss evaluation

- Measurement at the Lohengrin spectrometer with 2.5 µm PS foil
- Comparison with Geant4 and SRIM-2013 calculations
 - → Confidence in the Geant4 stopping power

Summary and perspectives

- New possibilities for measuring lifetimes after neutron-induced fission
- Ongoing lineshape analysis on the active target data to extract sub-ps lifetimes

- Development of a plunger and a fission fragment identification setup for ps lifetime measurements
- The commissioning with ²⁵²Cf source of the Plunger device and following experiments are foreseen in 2023

Thank you for listening!

The plunger device at a neutron beam

J. Ljungvall *et al.,* NIMA 679 (2012) 61

- Measurement of lifetimes in the ps to ns time range with RDDS method
- Use in neutron-induced fission reactions
- First test with a ²⁵²Cf source
- Need of a mass identification setup

The plunger device at a neutron beam

Geant4 simulations of ¹⁰⁴Mo (4+ \rightarrow 2+, τ =37.7 ps)

 \rightarrow Doppler corrected spectra in forward and backward detectors

14.4µm

Counts

3000 2000

1000

The plunger device at a neutron beam

Fission fragment identification

System designed for a mass resolution of 3-5 amu, inspired by the VERDI spectrometer

Mass reconstruction with the v-E measurement

The *plunger* device at a neutron beam

Fission fragment identification

Reconstructed fission fragments mass distribution from simulated ²⁵²Cf source

Design in collaboration with IJCLab

Design and simulation of the fission fragment detection system which allows to have a mass resolution of 3-5 amu

 \rightarrow Study of already existing fission fragment spectrometers (VERDI, FALSTAFF, SPIDER...)

Geant4 Monte Carlo simulations and FIPPS efficiency

- Geant4 simulations to reproduce experimental campaigns and study the feasibility of future experiments
- Validated with the ¹⁵²Eu efficiency curve
- Efficiency curve up to 8 MeV thanks to (n, γ) reactions

Nicolas Riggaz, internship 2022

 $eff(x) = A \ln^5(x) + B \ln^4(x) + C \ln^3(x) + D \ln^2(x) + E \ln(x) + F$ the european neutron source

Performance of the active fission target

FOR SOCIETY