CGS17 # In-beam y-ray spectroscopy of ⁹⁴Ag #### X. Pereira-López Center for Exotic Nuclear Studies, Institute for Basic Science (IBS) University of York #### Contents - Motivation - Isospin-symmetry - MED - TED - CED - Nucleon pairing - Experimental setup - Results - Discussion - Conclusions ### Isospin Observation of similar behaviour of p and n under the nuclear force Charge symmetry $$V_{np} = \frac{V_{pp} + V_{nn}}{2}$$ $$V_{pp} = V_{nn}$$ **Isospin:** p and n considered states of the same particle (*nucleon*) with different projections of the isospin quantum number t_z . The total isospin projection T_z of a nucleus will be: $$T_z = \sum_{z=1}^{A} t_z = \frac{N - Z}{2}$$ Hence, a nucleus can occupy states with a total isospin T values given by: $$\frac{|N-Z|}{2} \leqslant T \leqslant \frac{|N+Z|}{2}$$ #### Bentley isospin triangle Bentley Isospin triangle displaying possible T states for a nucleus with a given T_z ### Isospin symmetry Isospin-symmetry-breaking probes include: - Mirror energy differences (MED) - Triplet energy differences (TED) - Coulomb energy differences (CED) | (MED) | | | | | | | | | | | | | ⁹¹ Pd | ⁹² Pd | ⁹³ Pd | 94 Pd | ⁹⁵ Pd | 96 Pd | ⁹⁷ Pd | ⁹⁸ Pd | ⁹⁹ Pd | ¹⁰⁰ Pd | 10 | |------------------|------------------|------------------|------------------|------------------|------------------|-------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-----| | ⁸⁹ Rh | | | | | | | | | | | | | | 91Rh | 92 Rh | 93 Rh | 94 Rh | 95 Rh | 96 Rh | ⁹⁷ Rh | 98 Rh | ⁹⁹ Rh | 10 | | ,_ | | | | | | | | | | | 87 Ru | | l | 90 Ru | 91Ru | 92 Ru | | 94 Ru | 95 Ru | | ⁹⁷ Ru | | | | | ΓΕ | D | | | | | | | | 85 Tc | ⁸⁶ Tc | 87 Tc | ⁸⁸ Tc | ⁸⁹ Tc | ⁹⁰ Tc | ⁹¹ Tc | ⁹² Tc | ⁹³ Tc | 94 Tc | ⁹⁵ Tc | ⁹⁶ Tc | ⁹⁷ Tc | 91 | | | | | | | | | | | ⁸³ Mo | | ⁸⁵ Mo | | ⁸⁷ Mo | ⁸⁸ Mo | ⁸⁹ Mo | ⁹⁰ Mo | | ⁹² Mo | | | | ⁹⁶ Mo | | | - (CED) | | | | | | | | ⁸¹ Nb | ⁸² Nb | ⁸³ Nb | 84 Nb | | | 87 Nb | | | 90 Nb | 91Nb | 92 Nb | | 94 Nb | NU | 96 | | • | | | | | | | | ⁸⁰ Zr | 81Zr | ⁸² Zr | 83 Zr | 84 Zr | ⁸⁵ Zr | 86 Zr | ⁸⁷ Zr | ⁸⁸ Zr | ⁸⁹ Zr | ⁹⁰ Zr | 91Zr | ⁹² Zr | ⁹³ Zr | ⁹⁴ Zr | 9.0 | | | | | | | ⁷⁶ Y | 77 Y | ⁷⁸ Y | ⁷⁹ Y | ⁸⁰ Y | 81 Y | 82 Y | 83 Y | 84 Y | 85 Y | ⁸⁶ Y | 87 Y | ⁸⁸ Y | 89 Y | 90 Y | ⁹¹ Y | ⁹² Y | 93 Y | 9. | | | | | ⁷³ Sr | ⁷⁴ Sr | ⁷⁵ Sr | ⁷⁶ Sr | 77 S r | ⁷⁸ Sr | ⁷⁹ Sr | ⁸⁰ Sr | 81Sr | 82 Sr | ⁸³ Sr | 84 Sr | ⁸⁵ Sr | | ⁸⁷ Sr | | ⁸⁹ Sr | 90 S r | 91Sr | ⁹² Sr | 9. | | | | | 72 Rb | 73 Rb | 74 Rb | 75 Rb | 76 Rb | ⁷⁷ Rb | 78 Rb | | ⁸⁰ Rb | 81Rb | | ⁸³ Rb | | ⁸⁵ Rb | | ⁸⁷ Rb | ⁸⁸ Rb | ⁸⁹ Rb | 90 Rb | 91Rb | 92 | | | ⁶⁹ Kr | ⁷⁰ Kr | ⁷¹ Kr | ⁷² Kr | ⁷³ Kr | ⁷⁴ Kr | ™Kr | 76 Kr | ⁷⁷ Kr | ⁷⁸ Kr | 79 Kr | 80 Kr | ⁸¹ Kr | ⁸² Kr | ⁸³ Kr | 84 Kr | ⁸⁵ Kr | ⁸⁶ Kr | ⁸⁷ Kr | ⁸⁸ Kr | ⁸⁹ Kr | 90 Kr | 9 | | | ⁶⁸ Br | ⁶⁹ Br | ⁷⁰ Br | ⁷¹ Br | ⁷² Br | ⁷³ Br | ⁷⁴ Br | ⁷⁵ Br | ⁷⁶ Br | ⁷⁷ Br | ⁷⁸ Br | ⁷⁹ Br | ⁸⁰ Br | ⁸¹ Br | ⁸² Br | ⁸³ Br | ⁸⁴ Br | ⁸⁵ Br | ⁸⁶ Br | ⁸⁷ Br | ⁸⁸ Br | ⁸⁹ Br | 9 | | ⁶ Se | ⁶⁷ Se | ⁶⁸ Se | ⁶⁹ Se | ⁷⁰ Se | ⁷¹ Se | ⁷² Se | ⁷³ Se | ™Se | ⁷⁵ Se | ⁷⁶ Se | ⁷⁷ Se | ⁷⁸ Se | ⁷⁹ Se | ⁸⁰ Se | 81Se | ⁸² Se | ⁸³ Se | 84 Se | ⁸⁵ Se | ⁸⁶ Se | ⁸⁷ Se | ⁸⁸ Se | 89 | | ³⁵ As | ⁶⁶ As | ⁶⁷ As | ⁶⁸ As | ⁶⁹ As | ⁷⁰ As | ⁷¹ As | ⁷² As | ⁷³ As | ⁷⁴ As | ⁷⁵ As | ⁷⁶ As | ⁷⁷ As | ⁷⁸ As | ⁷⁹ As | ⁸⁰ As | ⁸¹ As | ⁸² As | ⁸³ As | ⁸⁴ As | ⁸⁵ As | ⁸⁶ As | ⁸⁷ As | 8 | | ⁴Ge | ⁶⁵ Ge | ⁶⁶ Ge | ⁶⁷ Ge | ⁶⁸ Ge | 69 Ge | ⁷⁰ Ge | 71 Ge | ⁷² Ge | ⁷³ Ge | ™Ge | ⁷⁵ Ge | ⁷⁶ Ge | 77 Ge | ⁷⁸ Ge | ⁷⁹ Ge | 80 Ge | 81 Ge | 82 Ge | 83 Ge | 84 Ge | ⁸⁵ Ge | ⁸⁶ Ge | 87 | | ³Ga | ⁶⁴ Ga | ⁶⁵ Ga | ⁶⁶ Ga | ⁶⁷ Ga | 68 Ga | ⁶⁹ Ga | ™Ga | 71Ga | ⁷² Ga | ⁷³ Ga | ⁷⁴ Ga | ⁷⁵ Ga | ⁷⁶ Ga | ⁷⁷ Ga | ⁷⁸ Ga | ⁷⁹ Ga | ⁸⁰ Ga | ⁸¹ Ga | ⁸² Ga | ⁸³ Ga | 84 Ga | ⁸⁵ Ga | 86 | | ² Zn | ⁶³ Zn | ⁶⁴ Zn | ⁶⁵ Zn | ⁶⁶ Zn | ⁶⁷ Zn | ⁶⁸ Zn | ⁶⁹ Zn | ⁷⁰ Zn | 71 Zn | ⁷² Zn | ⁷³ Zn | 74 Zn | ⁷⁸ Zn | ⁷⁶ Zn | ⁷⁷ Zn | ⁷⁸ Zn | ⁷⁹ Zn | ⁸⁰ Zn | ⁸¹ Zn | ⁸² Zn | ⁸³ Zn | ⁸⁴ Zn | 85 | | ¹Cu | ⁶² Cu | ⁶³ Cu | ⁶⁴ Cu | ⁶⁵ Cu | ⁶⁶ Cu | ⁶⁷ Cu | 68 Cu | ⁶⁹ Cu | ⁷⁰ Cu | 71 Cu | ⁷² Cu | ⁷³ Cu | ⁷⁴ Cu | ⁷⁵ Cu | ⁷⁶ Cu | ⁷⁷ Cu | ⁷⁸ Cu | ⁷⁹ Cu | ⁸⁰ Cu | ⁸¹ Cu | ⁸² Cu | | | | Ni Ni | ⁶¹ Ni | ⁶² Ni | ⁶³ Ni | ⁶⁴ Ni | ⁶⁵ Ni | ⁶⁶ Ni | ⁶⁷ Ni | ⁶⁸ Ni | ⁶⁹ Ni | ⁷⁰ Ni | 71 Ni | ⁷² Ni | ⁷³ Ni | ⁷⁴ Ni | ⁷⁵ Ni | ⁷⁶ Ni | ⁷⁷ Ni | ⁷⁸ Ni | ⁷⁹ Ni | | | | | | ⁹ Со | ⁶⁰ Co | ⁶¹ Co | ⁶² Co | ⁶³ Co | 64 Co | ⁶⁵ Co | ⁶⁶ Co | ⁶⁷ Co | ⁶⁸ Co | ⁶⁹ Co | ⁷⁰ Co | ⁷¹ Со | ⁷² Co | ⁷³ Co | ™Co | ⁷⁵ Co | ⁷⁶ Co | | | | | | | | [®] Fe | ⁵⁹ Fe | ⁶⁰ Fe | ⁶¹ Fe | ⁶² Fe | ⁶³ Fe | 64 Fe | 65 Fe | ⁶⁶ Fe | ⁶⁷ Fe | 68 Fe | ⁶⁹ Fe | ⁷⁰ Fe | 71 Fe | ⁷² Fe | ⁷³ Fe | ⁷⁴ Fe | | | | | | | | | 7 Mn | ⁵⁸ Mn | ⁵⁹ Mn | 60 Mn | ⁶¹ Mn | ⁶² Mn | ⁶³ Mn | ⁶⁴ Mn | ⁶⁵ Mn | 66 Mn | ⁶⁷ Mn | 68 Mn | ⁶⁹ Mn | ⁷⁰ Mn | ⁷¹ Mn | | | | | | | | | | | 6Cr | ⁵⁷ Cr | 58 Cr | ⁵⁹ Cr | 60 Cr | 61Cr | 62 Cr | 63 Cr | 64 Cr | 65 Cr | 66 Cr | ⁶⁷ Cr | 68 Cr | | | | | | | | | | | | | ⁵⁵ V | ⁵⁶ V | ⁵⁷ V | 58 V | ⁵⁹ V | 60 V | ⁶¹ V | ⁶² V | ⁶³ V | 64 V | ⁶⁵ V | 66 V | | - | | | | | | | | | | | | 54 Ti | ⁵⁵ Ti | ⁵⁶ Ti | 57 T i | 58 Ti | ⁵⁹ Ti | ⁶⁰ Ti | ⁶¹ Ti | ⁶² Ti | ⁶³ Ti | | | - | | | | | | | | | | | | | 3Sc | ⁵⁴ Sc | 55 Sc | 56 Sc | 57 Sc | 58 Sc | ⁵⁹ Sc | 60 Sc | 61Sc | | - | | | | | | | | | | | | | | ### Isospin symmetry #### Isospin-symmetry-breaking probes include: - Mirror energy differences (MED) - Triplet energy differences (TED) - Coulomb energy differences (CED) Eur. Phys. J. A THE EUROPEAN PHYSICAL JOURNAL A https://doi.org/10.1140/epja/s10050-023-00950-8 (2023)59:44 Regular Article - Experimental Physics #### In-beam γ -ray spectroscopy of 94 Ag **Sel Department of Physics, KTH-Royal Institute of Technology, 10691 Stockholm, Sweden ## Nucleon pairing - Like-nucleon pairing (nn and pp) is the dominant pairing correlation. - In N~Z systems, np pairings are possible. a $$T = 1, J = 0$$ **b** T = 0, J > 0 - Evidence of spin-aligned T=0 np pairing is elusive. - Rotational alignment in ⁸⁸Ru - Yrast sequence in ⁹²Pd B. Cederwall et al., Nature 461, (2011) 6871. - Theory studies suggested similar effect in N=Z A>90 ⁹⁴Ag and ⁹⁶Cd G.J.Fu, J.J Shen, Y.M. Zhao and A. Arima, PRC 87 (2013) 044312 Z.X.Xu, C. Qi, J. Blomqvist, R.J. Liotta and R. Wyss, Nucl. Phys. A 877 (2012) 51-58 S. Zerquine and P. Van Isacker, PRC 83 (2011) 064314. ## Current knowledge on 94Ag - Several experimental studies have been focused on ⁹⁴Ag: - [1] J. Park et al., PRC 99, 034313 (2019). - [2] K. Moschner et al., EPJ web conf. 93, (2015) 01024. - [3] M. La Commara et al., Nucl. Phys. A 708 (2002) 167-180. - [4] I. Mukha et al., PRC 70 (2004) 044311. - [5] I. Mukha et al., PRL 95 (2005) 022501. - [6] K. Schmidt et al., Z. Phys. A 350 (1994) 99-100. - [7] C. Plettner et al., Nucl. Phys. A 733 (2004) 20-36. - [8] E. Roeckl, Int. J. Mod. Phys. E 15, 2 (2006) 368-373. - [9] O.L. Pechenaya et al., PRC 76 (2007) 011304(R). - [10] T. Kessler et al., Nucl. Instrum. Methods PRB 266 (2008) 4420-4424. - [11] A. Kankainen et al., PRL 101 (2008) 142503. - [12] K. Kaneko et al., AIP Conference Proceedings 1090 (2009) 611. - [13] J. Cerny et al., PRL 103 (2009) 152502. - [14] David G. Jenkins, PRC 80 (2009) 054303. - [15] I. Mukha et al., arXiv:1008.5346 [nucl-ex] (2009). - [16] Mamta Aggarwal, PLB 693 (2010) 489-493. - However, current knowledge is limited to: - 0⁺ ground state, half life of 27(2) ms [1,2] - Two isomeric states: - (7⁺) [3] half life of 0.50(1) ms [1,4] located at 6.7 MeV [5]. β , β -delayed p and p - (21⁺) [3] half life of 0.39(4) ms [4] #### Experimental setup • All detector signals are time stamped to allow temporal correlations. - 94Ag transitions were identified in the Doppler corrected γ-ray spectra for: - Prompt emission - short-lived A=94 fragments (decay within 60ms) - One or less charged particles - High energy β (E > 3 MeV) - Comparison with spectra recorded for - b) higher charged particle multiplicity - c) Longer lived A=94 recoils - decay between 120 and 180 ms - d) A=94 recoil - γ-rays at 273, 463, 637, 791, 874, 1121 and 1148 keV seem to grow respect to other A=94 contaminants when gating on the reaction channel leading to ⁹⁴Ag. - Most contaminants are ⁹⁴Ru transitions. - evidence of ⁹⁴Rh, ⁹⁴Tc and ⁹⁰Mo - They come from either: - false correlations - misidentified p3n events Background substracted Doppler corrected spectra for prompt γ -rays for A=94 recoils decaying withing 60ms (a) or 120-180ms (b), in coincidence with a high energy β and rejecting events with 2 or more charged particles in JYtube. - Comparison with spectra recorded for - b) higher charged particle multiplicity - c) Longer lived A=94 recoils - decay between 120 and 180 ms - d) A=94 recoil γ-rays observed in this work are associated with a short lived A=94 nucleus, produced via one charged particle evaporation channel and whose half-life is consistent with currently accepted value for 94 Ag ground state β -decay. Not enough statistics for γ-γ analysis. ## Shell model predictions - Shell model calculations using JUN45 interaction in the fpg model space. - \circ Dominant decay patterns assuming direct population of the 2⁺, 4⁺ and 6⁺ T=1 states - However, if T=0 lie 750 keV higher, E2 sequence from 6⁺ becomes dominant. - Location of T=0 strongly influenced by np aligned $g_{9/2}$ matrix element. Z.X.Xu, C. Qi, J. Blomqvist, R.J. Liotta and R. Wyss, Nucl. Phys. A 877 (2012) 51-58 #### **CEDs** - Based on comparison with ⁹⁴Pd - 791, 874 and 637 keV in ⁹⁴Ag tentative analog of - 814, 905 and 659 keV in ⁹⁴Pd - Negative CEDs - Observed only for ⁷⁰Br-⁷⁰Se - Compared to SM calculations - decresing trend - ∘ ~35 keV shift - SM cast doubts on this tentative assignment CEDs as function of J between tentatively assigned T=1 levels in ⁹⁴Ag and analog states in ⁹⁴Pd. **Shell model predictions with and without single particle monopole effects** in red circles and green triangles. #### Conclusions - Seven γ -ray transitions observed are associated with a short lived A=94 nucleus, produced via one charged particle evaporation channel and whose half-life is consistent with accepted value for 94 Ag ground state β -decay. - $^{\circ}$ First observation of γ -ray transitions from 94 Ag excited states. - Level scheme remains unclear. - Shell model calculations were presented, showing the separation between T=1 and T=0 strongly influences the decay pattern. - Work required to determine the relative position of T=0 and T=1 states. - provide insight into the np spin-aligned pairing in this nucleus - Possible correspondence between observed transitions and analogue states in neighbouring T=1 isobar nucleus ⁹⁴Pd is discussed. - Shell model predicted CEDs are presented. #### Collaborators Eur. Phys. J. A (2023) 59:44 https://doi.org/10.1140/epja/s10050-023-00950-8 ## THE EUROPEAN PHYSICAL JOURNAL A Regular Article - Experimental Physics #### In-beam γ -ray spectroscopy of 94 Ag - X. Pereira-López^{1,2,a}, M. A. Bentley^{1,b}, R. Wadsworth¹, P. Ruotsalainen³, S. M. Lenzi^{4,5}, U. Forsberg^{1,6}, - K. Auranen³, A. Blazhev⁷, B. Cederwall⁸, T. Grahn³, P. Greenlees³, A. Illana³, D. G. Jenkins¹, R. Julin³, H. Jutila³, - S. Juutinen³, X. Liu⁸, R. Llewelyn¹, M. Luoma³, K. Moschner⁷, C. Müller-Gatermann^{7,9}, B. S. Nara Singh^{10,11}, - F. Nowacki¹², J. Ojala³, J. Pakarinen³, P. Papadakis¹³, P. Rahkila³, J. Romero^{3,14}, M. Sandzelius³, J. Sarén³, - H. Tann^{3,14}, S. Uthayakumaar¹, J. Uusitalo³, J. G. Vega-Romero¹, J. M. Vilhena¹⁰, R. Yajzey^{1,15}, W. Zhang^{1,8}, - G. Zimba³ - ¹ School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, UK - ² Center for Exotic Nuclear Studies, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea - ³ Department of Physics, University of Jyväskylä, P.O. Box 35, 40014 Jyvaskyla, Finland - ⁴ Dipartimento di Fisica e Astronomia "Galileo Galilei", Università di Padova, 35131 Padua, Italy - ⁵ INFN, Sezione di Padova, 35131 Padua, Italy - ⁶ Department of Physics, Lund University, 22100 Lund, Sweden - ⁷ Institute of Nuclear Physics, University of Cologne, 50937 Cologne, Germany - ⁸ Department of Physics, KTH-Royal Institute of Technology, 10691 Stockholm, Sweden - ⁹ Argonne National Laboratory, 9700 S Cass Av, Lemont 60439, USA - ¹⁰ School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley PA12BE, UK - ¹¹ School of Physics and Astronomy, Schuster Laboratory, Brunswick Street, Manchester M13 9PL, UK - ¹² Université de Strasbourg, 67037 Strasbourg, France - ¹³ STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK - ¹⁴ Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, UK - ¹⁵ Department of Physics, Faculty of Science, Jazan University, 45142 Jazan, Saudi Arabia JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ