Direct Measurement of the ¹¹⁴Cd(n,γ) Cross Section in the 1 eV to 300 keV Energy Range

Ben Crider

Ph.D. Dissertation work of Kofi T. A. Assumin-Gyimah (defended May 2023)

Acknowledgements: Thank You!

- Mississippi State University
 - K. Assumin-Gyimah
 - B. Crider •
 - D. Dutta
 - D. Araya ٠
 - S. Vajdic

- A. Couture
- J. Ullmann
- C. Prokop
- C. Fry
- E. Leal Cidoncha
- G. Rusev

University of Kentucky Group

- S. Yates
- E. Peters

Charles University

- M. Krtička •
- S. Valenta •

University of Dallas S. Hicks •

United States Naval Academy

• J. Vanhoy

Supported by U.S. DoE FY20/21/22/23 awards SC0021424, SC0021243, SC0021175, SSC000056

Motivation for studying Cd capture: applied physics

- Cadmium data are relevant to safeguards instruments that use Cd in nondestructive assay techniques [1, 2]
 - Passive Neutron Albedo Reactivity (PNAR)
 - Self-Interrogation Neutron Resonance Dosimetry (SINRD)
- PNAR [3]

MISSISSIP

U N I V E R S I T Y 🗤

Abundances of "Stable" Cadmium
Isotopes

¹⁰⁶ Cd (1.25%)	stable
¹⁰⁸ Cd (0.89%)	stable
¹¹⁰ Cd (12.47%)	stable
¹¹¹ Cd (12.80%)	stable
¹¹² Cd (24.11%)	stable
¹¹³ Cd (12.23%)	stable
¹¹⁴ Cd (28.75%)	stable
¹¹⁶ Cd (7.51%)	3.1×10 ¹⁹ yrs.

- Measure the neutron flux from a fissile material twice and find ratio
- Fuel is surrounded by a material that maximizes neutron multiplication
- The low multiplying case created by placing a Cd liner around the the assembly

Nuclear Data Needs and Capabilities for Applications, 2015 Workshop at LBNL (2015)
 Bahran *et al.* from 55th annual Institute of Nuclear Materials Management meeting
 Radiation Measurements **61**, 83 (2014).

Motivation from a nuclear data perspective

- Overall, there is a lack of data on ¹¹⁴Cd capture cross sections
 - Most data come from either Musgrove et al. [1] or Wisshak et al. [2] and often they don't agree within uncertainty

• No direct measurement of resonance region

A R de L Musgrove, *et al.* J. Phys. G: Nucl. Phys. **4** 771 (1978)
 K. Wisshak, *et al.* Phys. Rev. C **66**, 025801 (2002)

Cd nuclei challenges

• CS different for each nuclide... quite different for ¹¹³Cd at low energies

Neutron capture reaction

DANCE Flight Path and Neutron Production

• Proton Beam, E_p = 800 MeV, provided by LANSCE (Los Alamos Neutron Science Center)

• Total energy measured in DANCE: $E_{sum} = E(\gamma_1) + E(\gamma_2) + E(\gamma_3) + \dots + E(\gamma_n)$

٠

The Detector for Advanced Neutron Capture Experiments (DANCE)

- 160 BaF₂ detectors in a close packed ~4π geometry (≈3.5 π)
- For a 1 MeV γ DANCE is ~85% efficient
- Relatively flat efficiency curve (70% efficient at ~10 MeV)
- Epithermal neutron beam allowing measurement across wide neutron energy range from 0.01 eV to ~500 keV
- 20.28 m flight path

http://lansce.lanl.gov/facilities/lujan/instruments/fp-14/index.php

Samples

• Our sample: enriched ¹¹⁴Cd sample was obtained from NIDC at Oak Ridge

- Mass of 98.0 mg
- 98.69% ¹¹⁴Cd with 0.178% ¹¹⁶Cd, 0.48% ¹¹³Cd, 0.37% ¹¹²Cd, 0.183% ¹¹¹Cd, 0.086% ¹¹⁰Cd
- 4-mm diameter
- Other Cd samples
 - 95.10% enriched ¹¹³Cd (Mass of 10.7 mg)
 - 98.27% enriched ¹¹²Cd (Mass of 95.7 mg)
 - Also have ¹¹¹Cd and ¹¹⁰Cd
- ²⁰⁸Pb sample
 - Used for scattered neutron background
 - 4-mm diameter
- ¹⁹⁷Au sample
 - For beam flux normalization
 - 5-kA thickness
 - 4-mm diameter
- ²²Na, ⁸⁸Y, PuBe
 - For calibrations

All targets seeing neutrons, including ¹⁹⁷Au CS normalization and ²⁰⁸Pb scatter subtraction had the same 4-mm diameter!

Cross section of (n,γ) reaction using DANCE

$$\sigma_{n,\gamma}(E_n) = \frac{1}{\varepsilon_{cut}\kappa f_a(E_n)} \frac{Y_{n,\gamma}^{114}(E_n)}{N_{114}} \underbrace{\begin{pmatrix}\sigma_{BM}(E_n)\\Y_{BM}(E_n)\end{pmatrix}}_{\propto \Phi_{BM}^{-1}}$$

- Yield $(Y_{n,\gamma}^{114}(E_n))$ in DANCE
- Neutron flux at beam monitor (BM) locations $(\Phi_{BM}(E_n))$
- Target flux normalization constant (κ)
- Transmission Correction for Neutron Monitors $(f_a(E_n))$
- Efficiency of DANCE array (ε_{cut}) for detecting gamma-ray cascades
- Number of atoms (N_{114})

DANCE Data Analysis

- E_{sum} summed energy of all gamma rays detected in a given event
- E_n neutron energy derived from Time-Of-Flight
- Dominating features are resonances in ${}^{114}Cd(n,\gamma)$, contaminants from ${}^{113}Cd(n,\gamma)$ and ${}^{112}Cd(n,\gamma)$ contaminants and scattered neutron background

DANCE Data Analysis: Yields

MISSISSIPPI STATE

•

DANCE Data Analysis: Yields

- Characterize contaminants and background
- For Cd contaminants:
 - Use data taken from enriched targets (here, ¹¹²Cd and ¹¹³Cd)
 - Normalize to assay, integrated beam current
 - Subtract from yield
- For scatter background:
 - Use ²⁰⁸Pb target data
 - Normalize Ba capture events from ²⁰⁸Pb to ¹¹⁴Cd data
 - Subtract from yield

 $\sigma_{n,\gamma}(E_n) = \frac{1}{\varepsilon_{cut} \kappa f_a(E_n)} \frac{Y_{n,\gamma}^{114}(E_n)}{N_{114}}$

B.P. Crider, CGS17

13

B.P. Crider, CGS17 15

DANCE Beam Monitors and Neutron Fluence

$$\sigma_{n,\gamma}(E_n) = \frac{1}{\varepsilon_{cut} \kappa f_a(E_n)} \frac{Y_{n,\gamma}^{114}(E_n)}{N_{114}} \left(\frac{\sigma_{BM}(E_n)}{Y_{BM}(E_n)}\right)$$

- We used two beam monitors for this experiment:
 - ⁶Li Beam Monitor: ⁶LiF converter foil that utilizes the ⁶Li(n,t) reaction
 - 235 U Beam Monitor: Gas filled 235 U fission chamber that utilized the 235 U(*n*,*f*) reaction
- Neutron flux is proportional to the monitor yields divided by the salient cross section (Y/σ)

$$\Phi_{BM}(E_n) \propto \frac{Y_{BM}(E_n)}{\sigma_{BM}(E_n)}$$
(1)

 ⁶Li monitor used from 1 eV to 5 keV, ²³⁵U beam monitor (BM) from 3 keV to 1 MeV, ²³⁵U monitor normalized to ⁶Li BM between 3-5 keV

DANCE Beam Monitors and Neutron Fluence

Neutron flux at sample position: normalization to ¹⁹⁷Au

• Flux at sample position

$$\Phi(E_n) = \kappa \frac{Y_{BM}(E_n)}{\sigma_{BM}(E_n)} \tag{1}$$

- The yield is related to cross section by $Y_{n,\gamma}^{Au}(E_n) = \Phi(E_n)N_{Au}\sigma_{n,\gamma}^{Au}(E_n)$ (2)
- Substituting (1) into (2): $Y_{n,\gamma}^{Au} = \kappa \frac{Y_{BM}(E_n)}{\sigma_{BM}(E_n)} N_{Au} \sigma_{n,\gamma}^{Au}(E_n)$ $\sigma_{n,\gamma}^{Au}(E_n) = \frac{1}{\kappa} \frac{Y_{n,\gamma}^{Au}(E_n)}{N_{Au}} \frac{\sigma_{BM}(E_n)}{Y_{BM}(E_n)} \quad (3)$
- Fitting 4.89 eV resonance in ENDF/B-VIII.0¹⁹⁷Au(n,γ) cross section (27 kbarns) to ¹⁹⁷Au yield gives κN_{Au} .

Transmission Correction for neutrons shadowed by target

• If beam of N_0 neutrons is incident on a target of thickness dx, and cross $\sigma_{n,\gamma}(E_n) = \frac{1}{\varepsilon_{cut}\kappa_{f_a}(E_n)} \frac{Y_{n,\gamma}^{114}(E_n)}{N_{114}} \left(\frac{\sigma_{BM}(E_n)}{Y_{BM}(E_n)}\right)$

• N_{BM} = neutrons that don't interact with target + fraction transmitted through target

$$N_{BM} = \alpha N_0 + \beta N(\tau), \ \alpha + \beta = 1, \ f_a = \frac{N_{BM}}{N_0} = 1 - \beta + \beta e^{-\sigma_{tot}\tau}$$

• In BM data, scale region of maximal transition (375 eV, just below largest resonance at 392 eV) to 1, use fact that largest resonance essentially absorbs all neutrons in ¹¹⁴Cd sample, and find transmission factor

Cascade Efficiency Determination

 Efficiency of DANCE for our measurement was determined using DICEBOX and GEANT4

CHARLES UNIVERSITY

- DICEBOX is used to simulate γ cascades from neutron capture
- It uses a statistical model produced from a combination of various nuclear level density models (NLDs) and photon strength functions (PSFs)
- GEANT4 model of DANCE was used to process the *γ*-cascade capture events
- GEANT4 simulation of the DANCE array response was done with target, detector, and beamline components
- Validated DICEBOX/GEANT4 simulation models by comparing them to the experimental spectra

B.P. Crider, CGS17 20

 $\sigma_{n,\gamma}(E_n) = \frac{1}{\varepsilon_{cut}\kappa f_a(E_n)} \frac{Y_{n,\gamma}^{114}(E_n)}{N_{114}} \left(\frac{\sigma_{BM}(E_n)}{Y_{DM}(E_n)}\right)$

Preliminary Differential Cross Section

Preliminary Differential Cross Section contd.

Conclusion

- We performed a direct measurement of the ${}^{114}Cd(n, \gamma){}^{115}Cd$ reaction cross section using DANCE
- We report new cross section for this reaction from 1 eV to 300 keV
- The measured ${}^{114}Cd(n, \gamma){}^{115}Cd$ cross section may have impact on NDA techniques and sprocess nucleosynthesis models that use these cross sections as input
 - Currently working on assessing impacts of new data
 - The cross section have been converted to new MACS from 5 keV to 100 keV
 - We have been in communications with safeguards group at LANL to discuss impact on PNAR simulations

Acknowledgements: Thank You!

- Mississippi State University
 - K. Assumin-Gyimah
 - B. Crider •
 - D. Dutta
 - D. Araya ٠
 - S. Vajdic

- A. Couture
- J. Ullmann
- C. Prokop
- C. Fry
- E. Leal Cidoncha
- G. Rusev

University of Kentucky Group

- S. Yates
- E. Peters

Charles University

- M. Krtička •
- S. Valenta •

University of Dallas S. Hicks •

United States Naval Academy

• J. Vanhoy

Supported by U.S. DoE FY20/21/22/23 awards SC0021424, SC0021243, SC0021175, SSC000056

MISSISSIPPI STATE