Measuring and Simulating Capture γ-Ray Spectra using the RPI γ-Multiplicity Detector

Katelyn Cook¹, Yaron Danon¹, Amanda Lewis², Michael Rapp², Adam Daskalakis², Devin Barry², Peter Brain¹, Dominik Fritz¹, Alec Golas¹, Adam Ney¹, Sukhjinder Singh¹, and Benjamin Wang¹

¹Gaerttner LINAC Center, Rensselaer Polytechnic Institute, Troy, NY, USA ²Naval Nuclear Laboratory, Schenectady, NY, USA

The 17th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS17) MINATEC Innovation Campus in Grenoble, France July 17-21, 2023

Outline

Overview of RPI γ-Multiplicity Detector System

- Motivation + Goals
- Detector System Description + Experimental Validation
- Current status and updates to models used to simulate γ-emission spectra
 - MCNP-6.2 with ACE files (ENDF/B-VIII.0), MCNP-6.2 using CGM
 - Modified version of MCNP-6.2 with DICEBOX
- Validating nuclear data by comparing experimental results to the modified simulation technique
 - Benchmark the system with a well-known isotope (⁵⁶Fe)

Motivation + Goals

- Measure neutron capture and fission γ-emission spectra as a function of energy and multiplicity for important nuclear materials in the RRR
 - Interest includes ²³⁵U, ²³⁸U, and other structural materials
- Generate accurate neutron capture γ-cascade data from experimental results
 - Compare with current simulation tools (using forward modeling methods)
 - Constrain models used for reaction and cascade calculations
 - Characterize for non-proliferation applications
- Improve the current models used to simulate γ-emission spectra following neutron capture

RPI γ-Multiplicity Detector

- 16 segment NaI(Tl) γ-multiplicity detector
 - Total volume: 20 L of NaI(Tl) surrounding the sample
 - Inside the detector is lined (~1 cm) with a B4C ceramic sleeve which is enriched 99.5 atom% in ¹⁰B to absorb scattered neutrons from the sample
 - Up to 96% efficiency for detecting γ-cascades

- Detector is used for capture yield and γ-spectra measurements
 - Useful neutron energy range: 0.01 eV 3 keV

New SIS3316-DT 16 Channel Digitizer

Digitize pulse wave for all events on all detectors
& obtain the energy of each detected event

Experimental Validation

Low Energy (0.01 – 100 eV) Capture Yield of ^{nat}Ta and ^{nat}U

- Sample thicknesses:
 - 10 mil ^{nat}Ta (0.012% ^{180m}Ta)
 - 20 mil^{nat}U $(0.7\%^{235}U)$
- Validation of the new DAQ system and julia-based processing codes
- Experimental results are compared to first-order theoretical capture yield $\left(Y = \left[1 e^{-N\sigma_t}\right] \frac{\sigma_{\gamma}}{\sigma_t}\right)$ using the different evaluations

Current MCNP-6.2 Simulation Status

Current tools for modeling γ -emission spectra show a large discrepancy between experimental and simulated γ -spectra for ¹⁸¹Ta(n, γ)

MCNP-6.2/ACE

 Extracts γ-ray data from ACE files (ENDF/B-VIII.0)

MCNP-6.2/CGM

- Cascading Gamma-Ray Multiplicity
- Produces correlated secondary γ-emissions

Rensselaer

NAVAL NUCLEAR

Updates: Modified MCNP-6.2

<u>Step 1</u>: γ-cascades are generated using an external code (i.e., **DICEBOX**) and are written to a file

<u>Step 2</u>: Run **modified MCNP-6.2**, for each capture event:

- 1. Read in γ -cascade from file
- Transport γ-cascade through the detector geometry
- Output an event file to tally γ-energy deposition in detector cells

<u>Step 3</u>: Process the output file using event-by-event analysis including coincidence and compare to experimental data

Validating Nuclear Data: Generate γ-cascades

e Gaerttner LIN AG Genter

Validating Nuclear Data: Run Modified MCNP-6.2

Comparing Experimental Data to Simulated y-Spectra

Simulation Validation: Modified MCNP-6.2

- Test Cases: ²²Na & ⁶⁰Co coincidence γ-sources
- Modified MCNP-6.2 reproduces the high energy sum peak resulting from coincidence

Validating Nuclear Data: Benchmark Experimental System

ttner LIN AC Genter

To measure capture γ -spectra accurately, the detector system needs to be benchmarked by isotopes with well-known capture γ -ray data (like ⁵⁶Fe)

DICEBOX

 Models full γ-cascades using evaluated nuclear data

EGAF

 Shows experimentally measured γ-ray lines (does not necessarily represent the full spectrum)

Validating Nuclear Data: ⁵⁶Fe(n,γ) Benchmark Results

Conclusion: experimental γ-spectra agree with modified MCNP-6.2/DICEBOX calculations for isotopes with well-known capture γ-ray data

 Results show modified MCNP-6.2/DICEBOX calculations perform better than ENDF/CGM

Applications: Deficiencies in evaluated y-ray data

erttner LINAC Center

¹⁸¹Ta(n,γ) spectra compared to modified
MCNP-6.2/DICEBOX simulation

Conclusion: modified MCNP 6.2/DICEBOX calculations for isotopes with gaps in capture γ-ray data agree better than ACE/CGM; however, improvements still need to be made

NAVAL NUCLEAR

Conclusions + Future Work

- Experimental, simulation and nuclear data methods were validated for the RPI γ-Multiplicity Detector
- When neutron capture γ-cascade data is well-known, the γ-emission spectra can be accurately calculated using the modified MCNP-6.2/DICEBOX simulation method.
- RPI γ-Multiplicity Detector system is now ready to analyze neutron capture γ-ray data and provide recommendations for isotopes with deficiencies in γ-ray data (like ¹⁸¹Ta and isotopes of U)

Looking forward...

Renssela

- Determine the accuracy of capture γ-spectra data for several isotopes including ⁵⁵Mn, ⁵⁹Co, ¹⁸¹Ta, and ²³⁸U
- Validate any new evaluations using the modified MCNP-6.2/DICEBOX forward modeling method and experimental results

