New evidence for alpha clustering structure in the ground state band of ²¹²Po

Martin von Tresckow

SPONSORED BY THE

Federal Ministry of Education and Research

TECHNISCHE

UNIVERSITÄT DARMSTADT

Motivation

- ²¹²Po has 2 protons and neutrons more than the doubly magic nucleus ²⁰⁸Pb
- Nuclei in the vicinity of ²⁰⁸Pb should be well described by shell model
- Excitation energy of the low-lying yrast states of ²¹²Po are well described by the shell model [1]
- Large α-decay width of the ground state cannot be described inside of the shell model

[1] H. Naïdja Phys. Rev. C 103:054303, 2021

213Ra

212Ra

Θ

Nucleus

214Ra

215Ra

216R:

217R

218R;

219R

Motivates the preformation of an α -particle by the valence nucleons

Seconds

July 18 2023 | CGS17 | Grenoble | IKP TU Darmstadt | Martin von Tresckow

Motivation

- Strongly mixing shell-model and α -cluster configurations can reproduce the α -decay width of the ground state
- Reduced transition strengths of the transitions from the low-lying yrast states
 are not well described by the shell model

[Exp] NNDC

July 18 2023 | CGS17 | Grenoble | IKP TU Darmstadt | Martin von Tresckow

Motivation

- Strongly mixing shell-model and α -cluster configurations can reproduce the α -decay width of the ground state
- Reduced transition strengths of the transitions from the low-lying yrast states
 are not described well by the shell model

[SM2] H. Naïdja Phys. Rev. C 103:054303, 2021

[Exp] NNDC

Experimental setup

 ROSPHERE array [2] @IFIN-HH in Magurele/Bucharest (Romania) (15 HPGe + 10 LaBr₃(Ce) detectors with PMTs)

> (+): Good time res. (~300 ps @1336 keV-1173 keV) (-): Worse energy res. (~3.6% @779 keV)

- SORCERER [3] (6 Si photodiodes/solar cells)
 - Covers the angles between 121.7 ° and 163.5 ° with respect to the ion beam direction

Experimental idea

- Impinging a ¹⁰B beam on ²⁰⁸Pb target (9.65 mg/cm², 99.14 %)
 - Beam energy: 51 MeV
 - Coulomb barrier: ~ 51 MeV [4]
- Gate on the particle spectrum to clean up the γ -spectrum

Coincidence spectrum with a LaBr₃(Ce) gate on 405 keV

Si-LaBr time difference (SLTD) spectrum

• LaBr₃(Ce) - LaBr₃(Ce) coincidence gate on the 223 keV-405 keV transitions

Lifetime determination of 41⁺ state of ²¹²Po

July 18 2023 | CGS17 | Grenoble | IKP TU Darmstadt | Martin von Tresckow

Discussion

• Lifetime of the low-lying yrast states could be determined

mean lifetime $ au$						
State I	this work	lit.	B(E2; I \rightarrow I-2)			
2^+_1	16(13) ps	20.5(26) ps	2.6(3) W.u.			
4_{1}^{+}	100(14) ps	-	9.4(13) W.u.			
6_{1}^{+}	1.66(28) ns	1.1(3) ns	8.7(15) W.u.			
8^+_1	20.8(17) ns	21.1(4) ns	4.6(1) W.u.			

 α-cluster components play an important role in the structure of these states

State I	ω_I	$\Gamma_{\alpha}(I)/\hbar$ in s^{-1}
0_{1}^{+}	0.116	$2.36 10^6$
2^{+}_{1}	0.170	$1.02 10^8$
4_{1}^{+}	0.199	$2.32 10^8$
6_{1}^{+}	0.190	$7.49 \ 10^7$
81	0.158	$4.99 10^6$

[Clu] T.M. Shneidman from the collaboration
[Clu1] F. Hoyler et al., Rev. C, 50:2631–2634, Nov 1994.
[Clu2] D. S. Delion et. al. Phys. Rev. C 85:064306, Jun 2012
[SM1] D. Kocheva et al. Phys. Rev. C, 96:044305, Oct 2017
[SM2] H. Naïdja Phys. Rev. C 103:054303, 2021
[Exp] NNDC and this work

Discussion

• Lifetime of the low-lying yrast states could be determined

mean lifetime $ au$					
State I	this work	lit.	B(E2; I \rightarrow I-2)		
2^+_1	16(13) ps	20.5(26) ps	2.6(3) W.u.		
4_{1}^{+}	100(14) ps	-	9.4(13) W.u.		
6_{1}^{+}	1.66(28) ns	1.1(3) ns	8.7(15) W.u.		
8^+_1	20.8(17) ns	21.1(4) ns	4.6(1) W.u.		

Lifetimes confirmed by RDDS [6]: 4⁺: 101(7) ps 6⁺: 1.65(15) ns

- For theorists and experimentalists, there is still work to be done
 - State dependent effective charge?

[6] V. Karayonchev et al., Phys. Rev. C 106:064305, 2022

[Clu] T.M. Shneidman from the collaboration
[Clu1] F. Hoyler et al., Rev. C, 50:2631–2634, Nov 1994.
[Clu2] D. S. Delion et. al. Phys. Rev. C 85:064306, Jun 2012
[SM1] D. Kocheva et al. Phys. Rev. C, 96:044305, Oct 2017
[SM2] V. Karayonchev et al., Phys. Rev. C 106:064305, 2022
[Exp] NNDC and V. Karayonchev et al., Phys. Rev. C 106:064305, 2022

219Ac

220Ac

221Ac

Outlook

- Measuring unknown lifetimes of the low-lying yrast states from ²¹⁴Rn and ²¹⁶Ra
 - Strong α-preformation

215Ac

216Ac

217Ac

218Ac

213Ac

214Ac

Figures are taken from NNDC and Chang Xu et al., Phys. Rev. C 95, 061306(R) (2017)

Outlook

- Measuring unknown lifetimes of the low-lying yrast states from ²¹⁴Rn and ²¹⁶Ra
 - Strong α-preformation
- Successful ²¹⁴Rn experiment last month with the same setup at IFIN-HH ²⁰⁸Pb(⁹Be,3n)²¹⁴Rn

Special thank the collaboration:

Ma. von Tresckow^{a,*}, M. Rudigier^a, T. M. Shneidman^b, Th. Kröll^a, M. Boromiza^c, C. Clisu^c, C. Costache^c,
D. Filipescu^c, N. M. Florea^c, I. Gheorghe^c, K. Gladnishki^d, A. Ionescu^c, D. Kocheva^d, R. Lică^c, N. Mărginean^c,
R. Mărginean^c, K. R. Mashtakov^{e,g}, C. Mihai^c, R. E. Mihai^c, A. Negret^c, C. R. Nita^c, A. Olacel^c, A. Oprea^c,
S. Pascu^c, G. Rainovski^d, T. Sava^c, M. Scheck^e, P. Spagnoletti^{e,f}, C. Sotty^c, L. Stan^c, I. Stiru^c, S. Toma^c,
A. Turturică^c, S. Ujeniuc^c

^aInstitut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289, Darmstadt, Germany
 ^bJoint Institute for Nuclear Research, Dubna 141980, Russia
 ^cHoria Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), R-077125 Bucharest, Romania
 ^dFaculty of Physics, St. Kliment Ohridski University of Sofia, 1164 Sofia, Bulgaria
 ^eUniversity of the West of Scotland, PA1 2BE Paisley, United Kingdom and SUPA, Glasgow G12 8QQ, United Kingdom
 ^fSimon Fraser University, 8888 University Drive, Burnaby, B.C., CANADA, V5A 1S6
 ^gUniversity of Guelph, 50 Stone Road E. Guelph, Ontario, Canada, N1G 2W1

and financial support:

- BMBF Verbundprojekt 05P2021 (ErUM-FSP T07)
- EURONS2
- IFA via grant 04FAIR/2020
- MCDI via grant PN19060102
- UKSTFC via grant ST/P005101/1
- Ministry of Science and Higher Education of the Russian Federation (Moscow, Contract No. 075-10-2020-117)

Federal Ministry of Education and Research

SPONSORED BY THE

Thank you for your attention!

For more informations: Ma. von Tresckow et al., PLB 821, 136624 (2021)

Backup slides

Lifetime determination applying Centroid shift method

Time difference spectrum D(t) between Feeder and Decay
 => convolution of decay rate N(t) and prompt response P(t)

Lifetime determination applying Centroid shift method

Time difference spectrum D(t) between Feeder and Decay
 => convolution of decay rate N(t) and prompt response P(t)

Prompt response centroid (PRC) curve

- Calibrated using ¹⁵²Eu source measured known $PRC(E_{feeder}, E_{decay}) = C^D(E_{feeder}, E_{decay}) - \tau$
- PRC to reference energy 344 keV as decay: PRC(E, 344 keV)

Lifetime determination of 61⁺ state of ²¹²Po

1476

 8^+

GS

²¹²Po

• Only once measured so far [1]: τ_{lit} = 1.1(3) ns [1] A. Poletti et al. Nucl. Phys. A473, 1987

- Slope method: τ = 1.75(26) ns
 Centroid shift method: τ = 1.56(30) ns
- Average: τ = 1.66(28) ns

0

Compton background correction

Compton background

E.R. Gamba et al., Nuclear Physics Research Section A 928:93 - 103, 2019

"Analytical time-correction" (ATC)

$$\begin{split} C_{p/p}^t &= C_{p/p}^m + \widetilde{t}_{cor} \\ \widetilde{t}_{cor} &= \frac{P/B(E_f) \cdot t_{cor}(E_d) + P/B(E_d) \cdot t_{cor}(E_f)}{P/B(E_f) + P/B(E_d)}, \\ t_{cor}(E_f) &= \frac{C_{p/p}^m - C_{bg/p}^m}{P/B(E_f)} \quad t_{cor}(E_d) = \frac{C_{p/p}^m - C_{p/bg}^m}{P/B(E_d)}. \end{split}$$

Si energy gate

TECHNISCHE UNIVERSITÄT

DARMSTADT

Experimental runs

Name of the run	Source	Length [days]	Trigger
For hefere	152 r	2	LoDa - LoDa
Eu-Defore	EU	Z	Labr + Labr
LaBr-centre	^{138}La	3	LaBr-centre + LaBr-ring
Run/NRun	¹⁰ <i>B</i> beam @ ²⁰⁸ <i>Pb</i> target	1	Ge + Ge
			(LaBr +) LaBr + Ge
1LRun	¹⁰ <i>B</i> beam @ ²⁰⁸ <i>Pb</i> target	2	Ge + Ge
			LaBr + Ge
SRun	^{10}B beam @ ^{208}Pb target	10	LaBr + Si
			Ge + Ge

Delayed time difference distribution

TECHNISCHE UNIVERSITÄT DARMSTADT

Anti-delayed time difference distribution

PRC values from ¹⁵²Eu source

TECHNISCHE UNIVERSITÄT DARMSTADT

Clustering models

- Clu:
 - Dinuclear system model
 - Cluster-type shapes are produced by the collective motion of the nuclear system in asymmetry coordinates
 - Wave function of the nucleus is treated as a superposition of a mononucleus and cluster configurations
 - Excitation energy of the low-yrast states are not determined in this work, the theoretical energy are fitted to the experimental results

[Clu] T.M. Shneidman from the collaboration
[Clu1] F. Hoyler et al., Rev. C, 50:2631–2634, Nov 1994.
[Clu2] D. S. Delion et. al. Phys. Rev. C 85:064306, Jun 2012
[SM1] D. Kocheva et al. Phys. Rev. C, 96:044305, Oct 2017
[SM2] H. Naïdja Phys. Rev. C 103:054303, 2021
[Exp] NNDC and this work

TECHNISCHE UNIVERSITÄT DARMSTADT

Clustering models

- Clu1:
 - Optical potential deduced from experimentally known charge distributions

U(r) = V(r) + i W(r)

- Wave functions are determined applying the DWBA
- Small alpha branchings are predicted

[Clu] T.M. Shneidman from the collaboration
[Clu1] F. Hoyler et al., Rev. C, 50:2631–2634, Nov 1994.
[Clu2] D. S. Delion et. al. Phys. Rev. C 85:064306, Jun 2012
[SM1] D. Kocheva et al. Phys. Rev. C, 96:044305, Oct 2017
[SM2] H. Naïdja Phys. Rev. C 103:054303, 2021
[Exp] NNDC and this work

Clustering models

- Clu2:
 - Add to each single particle shell model radial wave function a cluster component

$$\psi_l(r) = \psi_l^{(\text{SM})}(r) + \psi_l^{(\text{clus})}(r)$$

$$\psi_l^{(\mathrm{SM})}(r) = \sum_{N \leqslant N_0} b_{nl}(-)^n \mathcal{R}_{nl}^{(\beta_0)}(r)$$

$$\psi_l^{(\text{clus})}(r) = \sum_N c_{nl}(-)^n \mathcal{R}_{nl}^{(\beta)}(r),$$

 $N > N_0$ (= 5,6)

- b_{nl} and c_{nl} can determined by diagonalizing the potential mean field
- Or diagonalizing the residual twobody interaction
- Basis contains single partical Gaussian-like wave functions: $\psi_l^{(clus)}(r) = \mathcal{N}_l^{(clus)} e^{-\beta_c(r-r_0)^2/2}$

[Clu] T.M. Shneidman from the collaboration [Clu1] F. Hoyler et al., Rev. C, 50:2631–2634, Nov 1994. [Clu2] D. S. Delion et. al. Phys. Rev. C 85:064306, Jun 2012

SLTD – LaBr energy matrix

LaBr energy gate on the 405 keV transition

Germanium spectrum low energy region

TECHNISCHE

UNIVERSITÄT DARMSTADT