Candidates for low-lying octupole isovector (mixed-symmetry) excitations CGS 17 – Grenoble

C.Fransen et al., PRC 67, 024307 (2003)

C.Fransen et al., PRC 67, 024307 (2003)

Experimental motivation (uncertainties in data) UNIVERSITY OF THE WEST of SCOTLAND

EXILL (EXogam at ILL): high statistics $(n_{th}, \gamma\gamma)$

 $\sigma_{n_{th}} \cdot m_{target} \approx 250 \ mg \cdot b$ (good HPGe counts rates)

A.Blanc et al., Eur. Phys. Jour. Conf. **93** (2015) 01015

¹⁴³Nd($n_{th},\gamma\gamma$) and ⁹⁵Mo($n_{th},\gamma\gamma$): (only) 8 Clover detectors at $\Theta = 90^{o}$ octagonal symmetry \Rightarrow 4 angular groups (45^o, 90^o, 135^o, and 180^o)

Nucleus	m _{target} [mg]	t _{mess} [hours]
⁹⁵ Mo	17	22
¹⁴³ Nd	0.8	20

$A^{-1}_{Z}X(n_{th},\gamma\gamma)$ reaction (in simple terms)

UNIVERSITY OF THE WEST of SCOTLAND

^{144}Nd 3_3^- octupole isovector candidate

^{144}Nd 3_3^- octupole isovector candidate

UNIVERSITY OF THE

WEST of SCOTL

^{144}Nd 3_3^{-} octupole isovector candidate

H.G.Boerner and J.Jolie, J.Phys.G. **19** (1993) 217

lifetime measurement: GRID – Gamma-Ray Induced Doppler-broadening method UNIVERSITY OF THE WEST of SCOTLAND

Literature:

 $\tau(2_1^+) = 4.28(7)$ ps

Courtesy: Michael Jentschel, ILL

^{144}Nd 3_3^- octupole isovector candidate

UNIVERSITY OF THE WEST of SCOTLAND

Lifetime measurement using Gamma-Ray induced Doppler (GRID) Broadening Method

H.G.Boerner and J.Jolie, J.Phys.G. **19** (1993) 217 Literature: $au(3_3^-) = 94^{+75}_{-34}$ fs

¹⁴⁴Nd

3⁻ octupole isovector candidate

UNIVERSITY OF THE

WEST of SCOTLAND

^{144}Nd 3_3^{-} octupole isovector candidate

$J_i \rightarrow J_f$	E_i	Eγ	$\tau(J_i)$	σL	Expt this work		QPM		
					b	δ	$B(\sigma L)$	E_i^{calc}	$B(\sigma L)$
$3^{-}_{1} \rightarrow 0^{+}_{1}$	1511	1511	^a 810 ⁺¹¹⁰ ₋₉₀	E3			^b 33.9(17)	1200	21.0
$3^2 \rightarrow 0^+_1$	2606	2606	°153 ⁺³⁰	E3			⁴ 1.1(1)	2820	2.0
$3^2 \rightarrow 3^1$		1095		M 1	18.8(3)	2.0^{+25}_{-8}	0.013(11)		0.04
				<i>E</i> 2			11+5		3.2
$3^3 \rightarrow 0^+_1$	2779	2779	31^{+10}_{-25}	E3			^b 7.3(7)	2904	7.4
$3^3 \rightarrow 3^1$		1268		M 1	35.4(5)	0.54(4)	$0.25^{+1.09}_{-0.08}$		0.17
				E2			14^{+70}_{-5}		19.0

M.Thuerauf, Ch.Stoyanov et al., Phys. Rev. C 99 (2019) 011304(R) QPM (Ch. Stoyanov): 3_3^- state is isovector; However, calculation indicates 3_3^- state rather two (quasi-)particle

UNIVERSITY OF

WEST of SCOTL

^{144}Nd 3_3^{-} octupole isovector candidate

UNIVERSITY OF THE WEST of SCOTLAND

 $\langle \mathbf{3}_{1}^{-} \left| \left| \widehat{M1} \right| \right| \mathbf{3}_{3}^{-} \rangle \\ = \mathbf{1}.\mathbf{32} \ \mu_{N}$

3⁻₃ remains a candidate for a low-lying octupole isovector state

⁹⁵Mo(n_{th},γγ)⁹⁶Mo projection total γγ matrix

UNIVERSITY OF

EST of SCOT

^{96}Mo 3_2^- octupole isovector candidate

^{96}Mo 3_2^- octupole isovector candidate

UNIVERSITY OF THE

WEST of SCOTL

⁹⁶Mo

3⁻₂ octupole isovector candidate angular distribution 944-keV transition

3⁻₂ octupole isovector candidate

⁹⁶Mo

3178 $\tau = 205^{+35}_{-30} fs$ 3_{2}^{-} Alternative $|\delta| = 0.49$ 6.2 0.05 explanation $0.04(1) \mu_N^2$ W.u. mW.u for M1 strength: 3_{1}^{-} $2^{+}_{4,ms}$ **Candidates are** build upon a $\langle \mathbf{3}_1^- \left| \left| \widehat{M1} \right| \right| \mathbf{3}_2^- \rangle$ coexisting shape 0.12 $= 0.53 \mu_N$ \Rightarrow mW.u. microscopic structure 2^{+}_{1} \Rightarrow have different 20.7 gyromagnetic factors W.u.

UNIVERSITY OF THE

WEST of SCOTLAN

⁹⁵Mo(n_{th},γγ)⁹⁶Mo projection total γγ matrix

UNIVERSITY OF THE

EST of SCOT

Acknowledgements

EXILL-core team:

G.S.Simpson, A.Blanc, G.deFrance, M.Jentschel, U.Koester, P.Mutti, T.Soldner, W.Urban

The collaborators:

M.Thuerauf, E.T.Gregor, C. Stoyanov C.Bernards, N.Cooper, J.Jolie, T.Kroell, R.Leguillon, C.Petrache, J.Vanhoy, V.Werner, K.O.Zell

Laboratoire de Physique Subatomique et de Cosmologie

Financial support:

Science and Technology Facilities Council

