Absolute electromagnetic transition rates in semi-magic N = 50 and 126 isotones as a test for  $(g_{9/2})^n$  single particle calculations.

J. Jolie<sup>1</sup>, V. Karayonchev<sup>1</sup>, M. Ley<sup>1</sup>, A. Blazhev<sup>1</sup>, A. Esmaylzadeh<sup>1</sup>, L. Knafla<sup>1</sup>,
A. Harter<sup>1</sup>, J.-M. Régis<sup>1</sup>, D. Kocheva<sup>2</sup>, G. Rainovski<sup>3</sup>, and P. Van Isacker<sup>3</sup>,
1: IKP, Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln, Germany
2: Faculty of Physics, St. Kliment Ohridski University of Sofia, 1164 Sofia, Bulgaria
3: GANIL, CEA/DRF–CNRS/IN2P3, Bvd Henri Becquerel, F-14076 Caen, France

- 1. Motivation
- 2. Studies of 211-At
- 3. Ongoing experiments on N = 50 isotones
- 4. Conclusions and outlook

## 1. Motivation

#### N= 126 Isotones

| Ac 214<br>8.2 s                                                                           | Ac 215<br>0.17 s                                     | Ac 216<br>0.44 ms                                                                   | Ac 217<br>0.74 µs 69 ns                                                                        | Ac 218<br>1.1 μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a 7.215: 7.081<br>y 139: 244                                                              | α 7.600; 7.211<br>ε<br>γ (396)                       | α 9.029; 9.105<br>γ 83; 854;<br>771                                                 | ly (850;<br>400;<br>382<br>α 10.54 α 9.65                                                      | α 9.205<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ra 213                                                                                    | Ra 214<br>2.46 s                                     | Ra 215<br>1.67 ms                                                                   | Ra 216<br>2.0 ns 0.18 µs                                                                       | Ra 217<br>1.6 μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1053, 6.731,<br>101;e <sup>rr</sup> 6.521<br>10.8466; 6.9110;<br>8.367 215;e <sup>r</sup> | α 7.137; 6.505<br>ε; g<br>γ (642)                    | α 8.700; 7.879<br>γ 834; 540                                                        | 344<br>a.9.551;<br>11.029 a.9.349                                                              | or 8.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fr 212<br>20.0 m                                                                          | Fr 213<br>34.6 s                                     | Fr 214<br>3.35 ms 5.0 ms                                                            | Fr 215<br>0.09 μs                                                                              | Fr 216<br>0.70 μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| e 6.262; 6.384;<br>5.408; 5.340<br>y 1274; 227; 1185                                      | α 6.775<br>ε                                         | = 8.477;<br>8.547                                                                   | α 9.36                                                                                         | a 9.01<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Rn 211<br>14.6 h                                                                          | Rn 212<br>24 m                                       | Rn 213<br>19.5 ms                                                                   | Rn 214                                                                                         | Rn 215<br>2.3 μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| α 5.789; 5.851<br>γ 674; 1363;<br>678; g                                                  | α 6.264<br>Υ                                         | α 8.088; 7.252<br>γ 540                                                             | hy 182<br>hy 182<br>mi<br>a 10.65 = 10.46 a 9.037                                              | a 8.67<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| At 210<br>8.3 h                                                                           | At 211<br>7.22 h                                     | At 212                                                                              | At 213<br>0.11 µs                                                                              | At 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ε; α 5.524;<br>5.442; 5.361<br>γ 1181; 245;<br>1483                                       | α 5.867<br>γ (687)<br>g                              | е 7.84; е 7.68;<br>7.90 7.62<br>үбЗ үбЗ<br>е <sup>-</sup> е <sup>-</sup>            | α 9.08                                                                                         | a 8.782 a 8.819<br>; m a 8.877; g<br>Y g Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Po 209<br>102 a<br>α 4.881                                                                | Po 210<br>138.38 d<br>15.30438<br>16031; o <0.0005   | Po 211<br>252 s 0.516 s<br>                                                         | Po 212<br>45.1 s 17.1 ns 0.3 µs<br>11.05 ly 728                                                | Po 213<br>4.2 μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| y (895; 261;<br>263)                                                                      | +<0.030;<br>σ <sub>6,02</sub> 0.002; σγ<0.1          | Y 370,<br>1064                                                                      | 583 223<br>17 a 10.22 a 8.785                                                                  | α 8.376<br>γ (779)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bi 208<br>3.68 · 10 <sup>5</sup> a                                                        | Bi 209<br>100<br>1.9 · 10 <sup>10</sup> a            | Bi 210<br>3.0-10 <sup>4</sup> s 5.013 d<br>+4.948 d <sup>-1,2</sup><br>4.908 +4.948 | Bi 211<br>2.17 m<br>α 6.6229; 6.2788                                                           | Bi 212<br>9m 25m 60.60 m<br>573 61.00<br>573 61.00<br>573 61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61.00<br>61 |
| ς<br>γ 2615                                                                               | a 3.137<br># 0.011 + 0.023<br># <sub>0.0</sub> <3E/7 | γ 268; 4.698<br>304 γ (305;<br># 0.054 268)                                         | $\begin{array}{c} \gamma \ 351 \\ \alpha \rightarrow g; \ \beta^{-} \rightarrow g \end{array}$ | y 101 101 1777.<br>1911. Jan 1838.<br>192 101 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Pb 207<br>22.1                                                                            | Pb 208<br>52.4                                       | Pb 209<br>3.253 h                                                                   | Pb 210<br>22.3 a                                                                               | Pb 211<br>36.1 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ır 0.61                                                                                   | or 0.00023<br>ora.u ≪8€∘6                            | 6 <sup>+</sup> 0.6                                                                  | p 0.02; 0.06<br>y 47; e <sup>-</sup> ; g<br>a 3.72<br>a <0.5                                   | 0 <sup>™</sup> 1.4<br>γ 405; 832;<br>427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



Two approaches can be followed:

Untruncated **numerical full shell model calculations** with the modified Kuo-Herling Particle (KHP) interactions and all proton orbits between Z= 82 and Z=126.

**Analytical single-j calculations** with a seniority conserving interaction or with empirical two-body matrix elements.



A de Shalit and I. Talmi, The Nuclear Shell Model (1963)

First detailed study of <sup>211</sup>At at ISOLDE and the Stockholm cyclotron.



Bergström et al. Phys Lett. B 32 (1970)476

Recently, this approach was extended to electromagnetic quadrupole transition rates by Piet Van Isacker.

- Assumptions:
- Seniority is conserved.
- The effective charges in one-body E2 operator of the two-j nucleus can be state dependent.
- The effective charges in the quadrupole moment of the state with spin R are the same as those for  $B(E2;R \rightarrow R-2) = B_R$  in the two-particle nucleus.

1 2

Then the following relation can be obtained:

$$B(E2; j^3[I]J \to j^3[I']J') = \left(\sum_R g_j(J, I, J', I', R)\sqrt{B_R}\right)^{-1}$$

First application to <sup>135</sup>I as  $(\pi 1g_{7/2})^3$  Spagnoletti et al. Phys. Rev. C 95 (2017) 021302

#### State dependent effective charges are needed in <sup>210</sup>Po.

| $J_i^{\pi}$ | $E_x$ (1 | $E_x$ (MeV) |             | $B(E2; J_i \to J_f)(\mathrm{e}^2 \mathrm{fm}^4)$ |            |            |                 |  |  |
|-------------|----------|-------------|-------------|--------------------------------------------------|------------|------------|-----------------|--|--|
|             | Expt     | SM          | $J_f^{\pi}$ | Expt                                             | $SM1-gh^a$ | $SM2-gh^b$ | $\mathrm{SM}^b$ |  |  |
| $2^{+}_{1}$ | 1.181    | 1.200       | $0_{1}^{+}$ | $136(21)^{c}$                                    | 263        | 137        | 133             |  |  |
| $4_{1}^{+}$ | 1.427    | 1.466       | $2_{1}^{+}$ | 335(14)                                          | 302        | 157        | 169             |  |  |
| $6_{1}^{+}$ | 1.473    | 1.482       | $4_{1}^{+}$ | 229(7)                                           | 209        | 109        | 116             |  |  |
| $8_{1}^{+}$ | 1.557    | 1.533       | $6_{1}^{+}$ | 84(3)                                            | 84         | 44         | 46              |  |  |

<sup>a</sup>With  $e_{\pi} = 1.51e$ . <sup>b</sup>With  $e_{\pi} = 1.09e$ . <sup>c</sup>From Ref. [36].

#### D. Kocheva et al., Eur. Phys. Journ. A 53 (2017) 175

# 2. Studies of 211-At

## **2.1 Fast timing results**

- <sup>208</sup>Pb(<sup>6</sup>Li,3n)<sup>211</sup>At @ 34 MeV
- Target:
- 54 mg/cm<sup>2</sup> 208*Pb*
- 100 mg/cm<sup>2</sup> 181 Ta backing
- I= 5 pnA
- 8 HPGe + 9 ø1.5x1.5'LaBr<sub>3</sub> (6 BGO)



## **Triple coincidences and scheme**



## The 17/2<sup>-</sup> excited state



# 2.2 Recoil Distance Doppler Shift (RDDS) experiment at the Cologne Tandem.

<sup>209</sup>Bi(<sup>16</sup>O, <sup>14</sup>C) <sup>211</sup>At two-proton transfer reaction with 84 MeV <sup>16</sup>O beam and <sup>14</sup>C detection with solar cells mounted in the Cologne plunger. Eleven HpGe detectors were mounted in two rings at 45 and 142 degrees. Target 1.1mg/cm<sup>2</sup> <sup>209</sup>Bi on 0.4 mg/cm<sup>2</sup> Mg backing. Stopper was 1.1 mg/cm<sup>2</sup> Mg.



V. Karayonchev et al., Phys. Rev. C 106, (2022) 044321

#### Particle gate



Gated single spectrum



The low-spin states are much more populated in the (<sup>16</sup>O, <sup>14</sup>C) two-proton transfer reaction than in the (6Li,3n) fusion evaporation reaction.



 $\begin{array}{c}
689 & 714 \\
23/2 - 4 & 7 \\
511 & 599 \\
21/2 - 4 & 7 \\
511 & 599 \\
17/2 - 254 \\
13/2 - 254 \\
1067 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\
9/2 - 4 \\$ 

#### Results for forwards ring:



|          | Lifetime [ps] |         |
|----------|---------------|---------|
| Forward  | Backward      | Adopted |
|          | RDDS          |         |
| 15.5(10) | 14.5(10)      | 15.0(7) |
| 5.4(10)  |               | 5.4(10) |
| 180(50)  | 260(60)       | 220(80) |

$$R_{i}(t) = I_{i}^{u}(t) / [I_{i}^{s}(t) + I_{i}^{u}(t)].$$

#### 2.3 Doppler Shift Attenuation Method experiment at the Cologne Tandem

<sup>209</sup>Bi(<sup>16</sup>O, <sup>14</sup>C) <sup>211</sup>At two-proton transfer reaction with 84 MeV <sup>16</sup>O beam and <sup>14</sup>C detection with solar cells mounted in the Cologne plunger set up. Target 0.5 mg/cm<sup>2</sup> <sup>209</sup>Bi on 1.5 mg/cm<sup>2</sup> Mg backing.



V. Karayonchev et al., Phys. Rev. C 106, (2022) 044321

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ing th                                                      | a now life                  | atimac                                 |                                                               |                      |                                                           |      |       |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------|----------------------------------------|---------------------------------------------------------------|----------------------|-----------------------------------------------------------|------|-------|---------|
| US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ing th                                                      | e new me                    | eumes                                  |                                                               | B(E2; J              | $J_{\rm i}^{\pi} \to J_{\rm f}^{\pi}) \ [e^2 {\rm fm}^4]$ | ']   |       |         |
| State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $E_{\text{feeder}}$ $E_{\text{feeder}}$ $E_{\text{feeder}}$ | decay HPGe gate             | $\tau$ (expt.) $\tau$ (                | lit.) $J_{\mathrm{i}}^{\pi} \rightarrow J_{\mathrm{f}}^{\pi}$ | Expt <sup>a</sup>    | single-j                                                  | KHP  | KHP*  |         |
| J <sup>n</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (keV) (k                                                    | (kev)                       | (ps) (p                                | $2_1^+ \rightarrow 0_1^+$                                     | 136(21) <sup>b</sup> | 136(21)                                                   | 260  | 237   | •       |
| 13/2 <sup>-</sup><br>17/2 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 254 1<br>599 2                                              | 067 511<br>254 1067         | $\leq 7 \leq 2140(140) \leq 2140(140)$ | $4_{100}^{+} \rightarrow 2_{1}^{+}$                           | 331(13)              | 331(13)                                                   | 331  | 336   |         |
| 23/2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 689 5                                                       | 511 254 and 1067            | 56(5) <                                | $6_1^+ \to 4_1^+$                                             | 227(5) <sup>c</sup>  | 227(5)                                                    | 227  | 226   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | Lifotimo [ps]               |                                        | $8^+_1 \rightarrow 6^+_1$                                     | 83(3)                | 83(3)                                                     | 90   | 91    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Forward                                                     | Backward                    | Adopted                                | $3/2^1 \to 5/2^1$                                             | 955(104)             | 678(9)                                                    | 740  | 756   | e       |
| State $7/2_1^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.5(10)                                                    | RDDS<br>14.5(10)            | 15.0(7)                                | $3/2^1 \to 7/2^1$                                             | 30(3)                |                                                           | 0.7  | 24.5  | •       |
| $5/2^{-}_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.4(10)                                                     |                             | 5.4(10)                                | $3/2^1 \to 7/2^2$                                             | 133(13)              | 94(4)                                                     | 130  | 115   |         |
| $13/2_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180(50)                                                     | DSAM                        | 220(80)                                | $5/2^1 \to 7/2^2$                                             |                      | 83(10)                                                    | 107  | 81.0  |         |
| $7/2_2^-$<br>$13/2_1^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0(4)<br>2.6(3)                                            | 3.3(4)<br>2.6(3)            | 3.15(30)<br>2.6(2)                     | $5/2^1 	o 9/2^1$                                              | $198^{+45}_{-31}$    | 195(12)                                                   | 279  | 259   |         |
| $11/2_1^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.3(3)                                                      | 3.1(3)                      | 3.2(2)                                 | $7/2^1 	o 9/2^1$                                              | $136^{+19d}_{-19}$   |                                                           | 14.7 | 128   |         |
| The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B(F2)                                                       | ) values c                  | an he                                  | $7/2^2 	o 9/2^1$                                              | $400^{+43d}_{-36}$   | 419(13)                                                   | 459  | 314   | ·       |
| inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |                             |                                        | $11/2^1 \to 7/2^2$                                            |                      | 95(6)                                                     | 102  | 96.4  | е.<br>С |
| compared to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                             | $11/2^1 \to 9/2^1$                     | $141^{+9d}_{-8}$                                              | 149(7)               | 154                                                       | 140  |       |         |
| theoretical predictions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |                             | $11/2^1 \to 13/2^1$                    |                                                               | 266(6)               | 252                                                       | 248  |       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                             |                                        | $13/2^1 \to 9/2^1$                                            | $226^{+19d}_{-16}$   | 226(11)                                                   | 291  | 273   |         |
| KHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>o</sup> * wit                                          | h                           |                                        | $15/2^1  ightarrow 11/2^1$                                    | 127(22)              | 167(4)                                                    | 169  | 169   |         |
| $h_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2.0h_{\odot}$                                              | $\sqrt{2} \hat{V} 0h_{0}/2$ | $1 f_{7/2}$                            | $15/2^1 \to 13/2^1$                                           | 28(6)                | 48(2)                                                     | 50   | 50    | d: EX   |
| $(J_{j})_{2}^{(j)}, (J_{j})_{2}^{(j)}, (J_{j})_{2}$ |                                                             |                             | $=2$ $17/2^1 \rightarrow 13/2^1$       | $300(20)^{e}$                                                 | 306(6)               | 332                                                       | 334  | e: EX |         |
| cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nged                                                        | from -0.C                   | 1235                                   | $17/2^1 \rightarrow 15/2^1$                                   |                      | 86(4)                                                     | 82   | 81.7  | -<br>-  |
| to -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2 M                                                       | eV                          |                                        | $21/2^1 \to 17/2^1$                                           | 198(7)               | 173(3)                                                    | 191  | 190   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                             |                                        |                                                               |                      |                                                           |      |       |         |

## **3. Ongoing experiments on N = 50 isotones**

Z = 50

In 98 In 99 In 100 In In 10 In 102 In 103 114.818 3.1 s 5.9 s 17s | 45 m 16 s 22.1 s 49 1004: 795 252; 750 Cd Cd 97 Cd 98 Cd 99 Cd 100 Cd 101 Cd 102 112.411 16 s 49.1 s 1.2 m 7.3 n 48 343; 672; 937; 140; 98; 1723 Ag 94 Ag 97 25.3 s Ag 98 46.7 s Ag 99 Ag 100 Ag 101 10.5 s 2.1 m 2.3 m | 2.0 m 3.1 s 863; 679; Pd 98 Pd 96 Pd 97 Pd 99 Pd 100 2.0 m 3.1 m 17.7 m 21.4 m 3.7 d RIB 3<sup>+</sup> 3.5... 265; 475; ε; β<sup>+</sup> 0.7 γ 112; 663; 3<sup>+</sup> 2.2... y 136; 264; ο β<sup>+</sup> 84: 75: 126 Rh 94 Rh 97 Rh 98 Rh 99 Rh 95 Rh 96 1.5 m | 8.7 m Ru 94 Ru 95 Ru 96 Ru 97 Ru 98 Ru 99 Ru 92 5.54 2.9 d 1.87 12.76 3.65 m 1,65 h 51.8 m 10.8 s 16: 324 Tc 96 Tc 97 Tc 92 Tc 93 4.4 m 92.2 d Mo 91 Mo 96 Mo 97 Mo 90 Mo 89 9.56 9.23 2.15 m 5.7 h Nb 92 Nb 90 Nb 91 Nb 89 0.15 d 3.6 18.8 s | 14.6 Zr 92 Zr 94 Zr 90 Zr 91 11.22 Zr 87 Zr 88 Zr 89 64.0 d Z = 4083.4 d 1.16 m 4.0 s Y 89 Y 92 Y 91 Y 86 Y 87 Y 88 Y 93 Y 94 106.6 d 3.19 h 49.7 m 18.7 r 48 m 13 h 80.3 h 16.0 s

N = 50

After the success in the N = 126 isotones, it would be interesting to study similar isotones.

Candidates could be the N = 50 isotones above Z= 40 where the  $\pi(1g9/2)$  orbit gets filled. Also here the knowledge on lifetimes and B(E2) values is limited and often contradictory or unprecise.

The problem is to populate the isotones above <sup>92</sup>Mo using stable or radioactive ion beams.

Here we report on the stable beam experiments performed recently in Cologne.

## <sup>92</sup>Mo:

The main problem is the lifetime of the first 4<sup>+</sup> state is needed for the prediction of all other B(E2) values. Note B(E2) to first 2<sup>+</sup> known via Coulex.

Recently, the lifetime of the 2<sup>+</sup> and 4<sup>+</sup> states was measured for the first time as 0.8(4) ps and 35.5(24) or 36.6(13) depending on the analysis method of a recoil distance experiment at GANIL. *R. M. Pérez-Vidal et al. Phys. Rev. Lett. 129 (2022) 112501.* 

To clarify the situation and reduce the statistical and systematic error two fusion evaporation reactions were used at the 10MV Tandem accelerator in Cologne.

EXP1:  ${}^{90}$ Zr( $\alpha$ ,2n)  ${}^{92}$ Mo @ 27 MeV on a 5.3mg cm<sup>-2</sup> 97.62% enriched target.

EXP2: <sup>93</sup>Nb(p,2n) <sup>92</sup>Mo @ 18 MeV on a 5.4mg cm<sup>-2</sup> monoisotopic target.

New:

Completely digital acquisition system (CAEN 500MHz digitisers) with digital CFD algorithm to reach timestamps with ps resolution. A. Harter et al. NIM A 1053 (2023) 168279.
Symmetrized Analysis. J. M. Régis et al. NIM A 897 (2018) 3.
Remeasurement of PRD relevant lifetime in <sup>152</sup>Gd. L. Knafla et al. NIM A 1052 (2023), 168279.





Exp1:  $\tau = 22.5(11)$  ps Exp2:  $\tau = 23(2)$  ps

| $J_i^{\pi_i} \to J_f^{\pi_f}$                                             | $	au_{ m EXP1} \  m ps$  | $	au_{\mathrm{EXP2}}$ ps | $	au_{ m adopted} \ { m ps}$ | Multipolarity                      | $\begin{array}{c} \mathbf{B}(\sigma\lambda;J_i^{\pi_i}\to J_f^{\pi_f})\\ \text{adopted} \end{array}$            | $\begin{array}{c} \mathbf{B}(\sigma\lambda;J_i^{\pi_i}\to J_f^{\pi_f})\\ \text{literature} \end{array}$       |
|---------------------------------------------------------------------------|--------------------------|--------------------------|------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| $2^+_1 \rightarrow 0^+_1$                                                 | $\leq 3$                 | $\leq 8$                 | $\leq 3$                     | E2                                 | $\geq 35 \text{ e}^2 \text{fm}^4$                                                                               | $207(12) e^{2} fm^{4} a$                                                                                      |
| $4^+_1 \rightarrow 2^+_1$                                                 | 22.5(11)                 | 23(2) <sup>d</sup>       | 22.5(11)                     | $\mathbf{E2}$                      | $132^{+7}_{-6} e^2 fm^4$                                                                                        | $84.3(14) e^2 fm^{4 b}$                                                                                       |
| $\begin{array}{c} 6^+_1 \rightarrow 4^+_1 \\ \rightarrow 5^1 \end{array}$ | 2200(20)                 | 2220(70)                 | 2200(20)                     | E2<br>E1                           | 81(2) $e^{2} fm^{4}$<br>5.3(6) ×10 <sup>-5</sup> $e fm^{2}$                                                     | 80(3) $e^{2} fm^{4} a$<br>5.3(7) ×10 <sup>-5</sup> $e fm^{2} a$                                               |
| $8^+_1 \rightarrow 6^+_1$                                                 | $310(3) \times 10^{3}$ f | -                        | $310(3) \times 10^3$         | $\mathbf{E2}$                      | $28.6(3) e^2 fm^4$                                                                                              | $32(1) e^2 fm^4 a$                                                                                            |
| $5^1 \rightarrow 4^+_1$                                                   | 2270(30)                 | 2250(60)                 | <mark>2270(30)</mark>        | E1 <sup>e</sup><br>M2 <sup>e</sup> | $ \begin{split} &\geq 1.88(3) \times 10^{-5} \ \mathrm{efm^2} \\ &\leq 93 \ \mu \mathrm{N^2 fm^4} \end{split} $ | $\begin{array}{l} 1.91(5) \times 10^{-5} \ {\rm efm^{2\ a}} \\ \leq 98 \ \mu {\rm N^2 fm^{4\ a}} \end{array}$ |
| $7^1 \rightarrow 5^1$                                                     | $\leq 5$                 | $\leq 7$                 | $\leq 5$                     | $\mathbf{E2}$                      | $\geq 101 \text{ e}^2 \text{fm}^4$                                                                              | -                                                                                                             |
| $9^1 \rightarrow 7^1$                                                     | 37(11)                   | 29(7)                    | <i>33(7)</i> °               | E2                                 | $255^{+69}_{-45} e^2 fm^4$                                                                                      | -                                                                                                             |

TABLE I. Summary of the measured mean lifetimes of the states  $J_i^{\pi_i}$  and the respective reduced transition probabilities

<sup>a</sup> From Refs.[25–33]

<sup>b</sup> From Ref. [5]

<sup>c</sup> Averaged value from EXP1 and EXP2 calculated using a Monte-Carlo method

<sup>d</sup> Averaged value from feeder-decay cascades 244-773 and 330-773 calculated using a monte-carlo method

<sup>e</sup> Mixing ratio  $\delta \leq 0.05$  from Ref. [34]

<sup>f</sup> Determined using Ge-LaBr timing

M. Ley, L. Knafla, A. Esmaylzadeh, A. Harter, J.-M. Regis, A. Blazhev, C. Fransen, J. Jolie and P. Van Isacker, to be subm. to PRC

## <sup>93</sup>Tc:

Very few absolute transition rates are known in this three valence proton nucleus:

the B(E2;  $17/2_1^+ \rightarrow 13/2_1^+$ ) = 88(18) e<sup>2</sup>fm<sup>4</sup> and the B(E2;  $21/2_1^+ \rightarrow 17/2_1^+$ ) = 73(5) e<sup>2</sup>fm<sup>4</sup>

A fast timing experiment was performed in Cologne using the <sup>90</sup>Zr(<sup>6</sup>Li, 3n)<sup>93</sup>Tc @ 31MeV reaction on a : 5.3mg/cm<sup>2</sup> <sup>90</sup>Zr (98% enriched) target.

Results (preliminary!):

| $E_{state}$ [keV                | V]                    | state $J^{\pi}$ | $	au = 	au_{ m expt.} \ [ m ps]$ | $]$ $	au_{ m lit.} [ m ps]$        |  |
|---------------------------------|-----------------------|-----------------|----------------------------------|------------------------------------|--|
| 1434                            |                       | $(13/2)^+$      | < 4                              | $<14$ $\times 10^{3}$ $^1$         |  |
| 1516                            | 1516 (11/             |                 | < 4                              | -                                  |  |
| 2185                            | 2185                  |                 | 29(4)                            | $39(7)$ $^{1}$                     |  |
|                                 |                       |                 |                                  |                                    |  |
| transition                      | $\mathrm{E}_{\gamma}$ | multipolarity   | B(E2) expt. $[e^2fm^4]$          | B(E2) single particle $[e^2 fm^4]$ |  |
| $13/2^+_1 \to 9/2^+_1$          | 1434                  | E2              | > 34                             | 164(6)                             |  |
| $11/2^+_1 \to 9/2^+_1$          | 1516                  | E2              | > 24                             | 86(3)                              |  |
| $17/2^+_1 \rightarrow 13/2^+_1$ | 750                   | E2              | $118^{+19}_{-14}$                | 114(3)                             |  |
| $21/2_1^+ \to 17/2_1^+$         | 350                   | ${ m E2}$       | 73(5) <sup>1</sup>               | 60(1)                              |  |

<sup>1</sup> Nuclear Data Sheets Update for A = 93



## <sup>94</sup>Ru (preliminary):

Also here the main problem is the lifetime of the first 4<sup>+</sup> state. Two recent RIB experiments at FAIR Phase 0 and GANIL yielded contradictory results:

 $\tau$  = 32(11) ps <sup>1</sup>

 $\tau$  = 87(8) ps <sup>2</sup>

Fast Timing experiment at Cologne Tandem <sup>92</sup>Mo(<sup>4</sup>He, 2n)<sup>94</sup>Ru @ 28MeV on 5.5mg/cm<sup>2</sup> <sup>92</sup>Mo (98% enriched)

yielded:  $\tau = 66(2) \text{ ps}$  or B(E2; 4+ $\rightarrow$  2+)= 50(2) e<sup>2</sup>fm<sup>4</sup> single-j prediction: B(E2; 4+ $\rightarrow$  2+)= 7.7(7) e<sup>2</sup>fm<sup>4</sup>

<sup>1</sup> B. Das et al. Phys. Rev. C 105, L031304 (2022) Fast Timing
 <sup>2</sup> R. M. Pérez-Vidal et al. Phys. Rev. Let. 129, 112501 (2022) RDDM





M. Ley et al. to be publ.

## 5. Conclusions

Nine lifetimes in <sup>211</sup>At were measured in three different experiments.

Excellent agreement with the single-j predictions for the B(E2) values in <sup>211</sup>At was obtained when using the ones in <sup>210</sup>Po as input.

In order to perform the same for the N= 50 isotones, precise lifetimes in <sup>92</sup>Mo were determined to serve as input for the calculations with more than two protons.

A fast timing experiment in <sup>93</sup>Tc yields promising results but more B(E2) values are needed.

The B(E2;  $4^+ \rightarrow 2^+$ ) in <sup>94</sup>Ru was measured to solve contradictory results from RIB experiments, but it still disagrees with the single-j predictions.

Much more stable and RIB experiments are needed.

## THANKS FOR YOUR ATTENTION