The Nuclear Structure of ⁷⁴Ge from Inelastic Neutron Scattering

Erin E. Peters University of Kentucky

Collaboration:

- S. W. Yates University of Kentucky
- B. A. Brown FRIB, Michigan State University

A. P. D. Ramirez – currently Lawrence Livermore National Laboratory

S. Mukhopadhyay – currently Georgia Institute of Technology

UKAL 7 MV Model CN VDG (External View) – Located on U. of KY's main campus

boratory gy

Why study the Ge isotopes?

Structurally Interesting!

- Shape Transition
- Soft/Rigid Triaxiality
- Subshell Closures

Broader Impacts: Neutrinoless Double-beta Decay

Structural Evolution of Ge

PHYSICAL REVIEW C 95, 064310 (2017)

Structural evolution in germanium and selenium nuclei within the mapped interacting boson model based on the Gogny energy density functional

K. Nomura,^{1,2} R. Rodríguez-Guzmán,³ and L. M. Robledo⁴

Triaxiality in ⁷⁶Ge

PHYSICAL REVIEW C 87, 041304(R) (2013) G Evidence for rigid triaxial deformation at low energy in ⁷⁶Ge

Y. Toh,^{1,2} C. J. Chiara,^{2,3} E. A. McCutchan,^{2,4} W. B. Walters,³ R. V. F. Janssens,² M. P. Carpenter,² S. Zhu,² R. Broda,⁵ B. Fornal,⁵ B. P. Kay,² F. G. Kondev,⁶ W. Królas,⁵ T. Lauritsen,² C. J. Lister,^{2,*} T. Pawłat,⁵ D. Seweryniak,² I. Stefanescu,^{2,3} N. J. Stone,^{7,8} J. Wrzesiński,⁵ K. Higashiyama,⁹ and N. Yoshinaga¹⁰ (2)

"...⁷⁶Ge may be a rare example of a nucleus exhibiting rigid triaxial deformation in the low-lying states."

Triaxiality in ⁷⁶Ge

 $\langle Q^2 \rangle$ ~0.28 quadrupole deformation

 $\langle \cos 3\delta \rangle$ axiality

A. D. Ayangeakaa et al.,Phys. Rev. Lett. **123**,102501 (2019).

Triaxiality in ⁷⁶Ge

Shell-Model Calculations by Alex Brown

Ground-state deformations:

A.D. Ayangeakaa, et al., Phys. Rev. C 107, 044314 (2023).

Quadrupole deformation $\beta \approx 0.28$

Triaxial deformation $\gamma \approx 27^{\circ}$

jj44b Hamiltonian

JUN45 Hamiltonian

0

Implications for 0νββ **Decay**

 $^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2\beta^- + 2\nu^ ^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2\beta^-$

Is the neutrino its own antiparticle?

What is the mass of the neutrino?

M. Agostini, et al. Rev. Mod. Phys. 95 025002 (2023).

Current Searches for ⁷⁶Ge $0\nu\beta\beta$

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

MAJORANA DEMONSTRATOR

30 kg 86% ⁷⁶Ge + 10 kg ^{nat}Ge SURF, SD, USA

http://neutrino.lbl.gov/majorana.html

40 kg 86% ⁷⁶Ge **Gran Sasso, Italy**

http://www.mpi-hd.mpg.de/gerda/

MAJORANA Collaboration: The simulated $0v\beta\beta$ signal in a highpurity germanium (HPGe) detector.

$0ν\beta\beta$ Decay Rate

from Nuclear Structure Theory

$T_{\frac{1}{2}}(0\nu\beta\beta) > 1.8 \times 10^{26} \text{ a} @ 90\% \text{ CL}$

M. Agostini et al. (GERDA), Phys. Rev. Lett. **125**, 252502 (2020).

Calculated Nuclear Matrix Elements

M. Agostini, G. Benato, J. A. Detwiler, J. Menéndez, and F. Vissani, Rev. Mod. Phys. 95, 025002 (2023).

Experimental nuclear structure data are needed to constrain the calculations.

A difference in -0.6 -0.4 -0.2 deformation between the parent and daughter 0.8 decreases the NME. 0.6 0.4 β ¹⁵⁰Sm **Beyond-mean-field** 0.2 density functional theory – Gogny D1S functional 0 -0.2 Tomás R. Rodríguez and Gabriel -0.4 0.5 Martínez-Pinedo, Phys. Rev. -0.6 Lett. 105, 252503 (2010).

Structure of ⁷⁶Ge and ⁷⁶Se

R. Nomura, K. Rodríguez-Guzmán, and L.M. Robledo, Phys. Rev. C 95, 064310 (2017).

The difference in deformation affects the NME.

Calculated Nuclear Matrix Elements

Impact of matrix elements on discovery potential at stated sensitivities and 90% CL.

M. Agostini, et al., Phys. Rev. C 104, L042501 (2021).

Experimental Techniques

HIGS Photon scattering

Neutron scattering

TUNL **UKAL**

II. Deformations

UKAL – Laboratory overview

- 7 MV Model CN VDG
- p, d, ³He, and α beams
- D.C. (~50 µA)
- Pulsed beams (~5 μA)
- •*f* = 1.875 MHz
- ∆*t* ~1 ns

UKAL – Opened in 1964 Almost 60 years of continuous operation and funding

Source reactions for neutrons:

• ³H(p,n)³He, Q = -0.76 MeV,

E_n < 5.5 MeV

• ²H(d,n)³He, Q = 3.3 MeV,

E_n = **4** – **9 MeV**

- ³H(d,n)³He, Q = 17.5 MeV,
 - E_n = 18 23 MeV
- ∆E < 100 keV
- Not a true beam, more of a cone

UKAL – Laboratory overview

- n detection: Talk by J.R. Vanhoy
- TOF techniques with up to 4 m flight path
- C₆H₆ and C₆D₆ neutron detectors

Compton-suppressed HPGe • Flux monitors: long counter, NE213 • More γ-ray work: S.F. Hicks, J.T.H. Dowie

UKAL – Updated Capabilities

New digital data acquisition system

Neutrons and ys

n detection PSD capabilities improved

New γ-ray timing capabilities

INS DSAM Lifetimes

T. Belgya, G. Molnár, and S.W. Yates, Nucl. Phys. A607, 43 (1996). E.E. Peters et al., Phys. Rev. C 88, 024317 (2013).

0° 180°

- **Scattered neutron causes the** nucleus to recoil.
- **Emitted** γ rays experience a Doppler shift.
- Level lifetimes in the femtosecond region can be determined.

INS DSAM Lifetimes

T. Belgya, G. Molnár, and S. W. Yates, Nucl. Phys. A607, 43 (1996).

INS Angular Distributions

 $W(\theta) = 1 + a_2 P_2(\cos \theta) + a_4 P_4(\cos \theta)$

Comparison with statistical model calculations to extract the E2/M1 mixing ratio

⁵⁶Fe

 $\delta = -0.155^{+13}_{-20}$ $\delta(NNDC)$ $= -0.18 \pm 0.01$

INS Excitation Functions

UKAL – Inelastic Neutron Scattering

Transition probabilities for:

- Constraining $0\nu\beta\beta$ nuclear matrix element calculations
- Identifying shape coexistence

- No Coulomb barrier
- Statistical population of all states up to $^{T}J^{\pi} = 6$
- Population of non-yrast states
- Level lifetimes (fs-ps) measured using the
 - **Doppler-shift attenuation method**
- Multipole mixing ratios also measured from
 - γ -ray angular distributions
- Eliminate erroneous states

Inelastic Neutron Scattering Advantages:

A Comprehensive Approach

- Identify <u>all</u> of the excited states up to some energy (*e.g.*, 3 MeV) in as many nuclei in the region as possible, but certainly those near the nucleus of interest.
- Eliminate the <u>erroneous states</u>.
 - States are populated statistically and non-selectively in INS.
 - Thus, we see population of states with J = 0 4 within ~100 keV incident E_n of the level energy and states with J = 5,6 within ~400 keV.
 - If we do not find at least the most intense γ ray(s) purportedly emitted from the state at the appropriate energies, we refute the level, labeling it an "erroneous state".
 - The γ ray is likely misplaced in the level scheme.
 - Coincidence data, while very helpful, are not generally required.
- Characterize <u>all</u> of the remaining states.
- Compare these data with theoretical model calculations.

⁷⁴Ge: First 10 States2006 ENSDF Evaluation

E_i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	E_{f}	J_f^π	Mult. [†]	δ	
595.850	2+	595.847 6	100	0.0	0^{+}	E2		$B(E2)(W.u.)=33.$ Mult : from $\gamma(pc)$
1204.205	2+	608.353 5	100 1	595.850	2+	E2+M1	+3.4 4	B(M1)(W.u.)=0.0 δ : from $\gamma\gamma(\theta)$ in
		1204.208 12	46 <i>3</i>	0.0	0^{+}	E2		B(E2)(W.u.)=0.7
1463.759	4+	867.898 <i>6</i>	100	595.850	2^{+}	E2		B(E2)(W.u.)=41
1482.81	0^{+}	887.19 7	100	595.850	2^{+}	E2		B(E2)(W.u.)=9 +
		1482.6		0.0	0^{+}	E0		From ce data (19
								$I_{(\gamma+ce)}: <0.006 \text{ f}$ $q_{K}^{2}(E0/E2)<0.12.$
1697.140	$(3)^{+}$	233.395 12	2.1 2	1463.759	4+			IV A A A A A A A A A A A A A A A A A A A
		492.936 6	58 1	1204.205	2+	(M1+E2)	+1.3 4	δ: from γ(θ) in ((1987Do14).
								Mult.: D+Q from
		1101.267 12	100 1	595.850	2+	(M1+E2)	+0.34 5	δ: from γ(θ) in (Mult · D+O from
1724.954	(0^{+})	520.744 12	100	1204.205	2+			
2165.259	(3,4)+	468.11 <i>3</i>	6.5 <i>3</i>	1697.140	$(3)^{+}$			
		701.487 6	42.7 3	1463.759	4+			
		961.055 10	100 1	1204.205	2+	(M1(+E2))	0.01 1	δ: from γ(θ) in (Mult.: D+Q from
2197.933	2+	715.17 3	35 2	1482.81	0^{+}			
		734.17 4	25 4	1463.759	4+			
		993.67 6	100 5	1204.205	2+	(E2+M1)	-2.8 2	δ: γγ(θ) in 74As Mult.: D+O from
		1602.0 2	45 4	595.850	2^{+}			
		2197.95 8	82 10	0.0	0^{+}			
2227.77	0^{+}	1021.9 <i>1</i>	38	1204.205	2^{+}			
		1631.89 <i>12</i>	100	595.850	2^{+}			
2403.5	1	2403.5 4		0.0	0^+			

Comments

8.0 4 iol,θ). .00099 15; B(E2)(W.u.)=43 6 in ⁷⁴As ε decay. Other: +2.2 3 from (n,n'γ). 71 11 1 3 +9-6 983Pa10). from ⁷⁴As ε decay. 2, X(E0/E2)<0.052, ρ^2 (E0)>0.032 (2005Ki02, evaluation). (n,n'γ) (1970Ch15). Other: 2.0 +3-6 or 0.75 +15-6 m γ(θ). ΔJ^{π} =no from placement in level scheme.

(n,n' γ) (1970Ch15). Other: 0.47 5 (1987Do14). m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

(n,n' γ) (1987Do14). m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

s ε. Mult from ΔJ^{π} . m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

⁷⁴Ge

⁷⁴Ge: First 10 States2006 ENSDF Evaluation

E_i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	E_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ	
595.850	2+	595.847 6	100	0.0	0^{+}	E2		B(E2)(W.u.)=33.
1204.205	2+	608.353 5	100 1	595.850	2+	E2+M1	+3.4 4	Mult.: from $\gamma(pc)$ B(M1)(W.u.)=0.0
		1204.208 12	46 <i>3</i>	0.0	0^{+}	E2		B(E2)(W.u.)=0.7
1463.759	4+	867.898 6	100	595.850	2^{+}	E2		B(E2)(W.u.)=41
1482.81	0^{+}	887.197	100	595.850	2^{+}	E2		B(E2)(W.u.)=9 +
		1482.6		0.0	0^{+}	E0		From ce data (19
								$I_{(\gamma+ce)}: <0.006 \text{ f}$ $q_V^2(E0/E2)<0.12.$
1697.140	$(3)^{+}$	233.395 12	2.1 2	1463.759	4+			
		492.936 6	58 1	1204.205	2+	(M1+E2)	+1.3 4	δ: from γ(θ) in ((1987Do14).
								Mult.: D+Q from
		1101.267 12	100 1	595.850	2+	(M1+E2)	+0.34 5	δ : from $\gamma(\theta)$ in (Mult.: D+Q from
1724.954	(0^{+})	520.744 12	100	1204.205	2^{+}			
2165.259	$(3,4)^+$	468.11 <i>3</i>	6.5 3	1697.140	$(3)^{+}$			
		701.487 6	42.7 3	1463.759	4+			
		961.055 10	100 1	1204.205	2+	(M1(+E2))	0.01 1	δ : from $\gamma(\theta)$ in (Mult.: D+Q from
2197.933	2+	715.17 3	35 2	1482.81	0^{+}			
		734.17 4	25 4	1463.759	4+			
		993.67 6	100 5	1204.205	2+	(E2+M1)	-2.8 2	δ : $\gamma \gamma(\theta)$ in ⁷⁴ As Mult : D+O from
		1602.0 2	45 <i>4</i>	595.850	2^{+}			
		2197.95 8	82 10	0.0	0^{+}			
2227.77	0^{+}	1021.9 1	38	1204.205	2^{+}			
	-	1631.89 12	100	595.850	2^{+}			
2403.5	1	2403.5 4		0.0	0^{+}			

Comments

8.0 4 iol,θ). .00099 15; B(E2)(W.u.)=43 6 in ⁷⁴As ε decay. Other: +2.2 3 from (n,n'γ). 71 11 1 3 +9-6 983Pa10). from ⁷⁴As ε decay. 2, X(E0/E2)<0.052, ρ^2 (E0)>0.032 (2005Ki02, evaluation). (n,n'γ) (1970Ch15). Other: 2.0 +3-6 or 0.75 +15-6 m γ(θ). ΔJ^{π} =no from placement in level scheme.

(n,n' γ) (1970Ch15). Other: 0.47 5 (1987Do14). m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

(n,n' γ) (1987Do14). m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

s ε. Mult from ΔJ^{π} . m $\gamma(\theta)$. ΔJ^{π} =no from placement in level scheme.

• 2403.5(4) keV γ ray was previously assigned as a ground-state transition from a spin-1 state in ⁷⁴Ge

• 2999 keV γ ray is newly observed

 E_{γ} (keV)

$\langle A \rangle \vee$
\mathbf{v}
÷

⁷⁴Ge

B.A. Brown

B.A. Brown

Calculations by Alex Brown with no input from our experiments

Nearly ready for submission to PRC

- To constrain the NME calculations for $0\nu\beta\beta$,
- Detailed spectroscopic data and knowledge of the deformations • are needed.
- The nuclear structure is complex (and interesting!) for the Ge nuclei, but
- We have many different tools available and people involved in the detailed studies.

Thank you!!

 Nuclear Structure Studies are funded by the National Science foundation through grants PHY –1913028 and PHY – 2209178

