

Recent highlights and prospects on (n,γ) measurements at the CERN n_TOF facility

J. Lerendegui-Marco on behalf of the n_TOF Collaboration

17th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics - CGS17

• Motivation

- Relevance of neutron capture cross sections
- Neutron capture measurements
- Neutron measurements at CERN n_TOF
 - Experimental areas & key features
 - Highlight measurements and limitations
- Recent upgrades in the facility and detection systems
- Existing limitations and future perspectives
 - TOF measurements on more unstable isotopes
 - NEAR: the new high flux activation station
- Summary

Motivation

17th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, July 17- 21 2023, Grenoble

Nuclear technologies & (n, y) cross sections

Innovative nuclear technologies

ntof

Accelerator-Driven Systems

- Nuclear waste burners
- Sub-critical systems + neutron source
- Demonstrator: MYRRHA

IV Generation Fast Reactors

- Higher burn-up and reduced waste radio-toxicity in fast reactors (FBR) compared to thermal LWR
- Burns fuels composed by U, Pu, MA

Fast reactors + new fuels : (n,y) not known with the required accuracy

s-process of nucleosynthesis & (n,γ) cross sections

Astrophysics: s-process

% Uncertainty MACS30

50

Key cases: branching points

^AZ(n, γ) competes with β decay (n, γ) cross sections \rightarrow conditions stellar environment

Challenging measurements: Radioactive isotopes, low masses

- $\sim \frac{1}{2}$ abundances A>56
- AGB & Massive stars

T = $10^8 - 10^9$ K N_n = $10^6 - 10^{12}$ cm⁻³

Neutron capture (n, y) cross section measurements \mathbb{C}

Neutron capture (n, y) cross section measurements

Neutron capture measurements at n_TOF

17th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, July 17-21 2023, Grenoble

The CERN n_TOF facility

Facility at CERN for high resolution neutron cross section measurements C. Rubbia et al. CERN/LHC/98-02(EET) 1998.

The CERN n_TOF facility

(n,g) @ the n_TOF facility: EAR1

n_TOF EAR1 (185 m, horizontal)

- Since $2001 \rightarrow +50$ (n, γ) measurements **Key features:**
 - Excellent energy resolution
 - Energy range up to 1 MeV

n_TOF-EAR1: key features for (n,g) & highlights

EAR1 (185m)

NTOF

Key features: High neutron energy limit for (n, y) + excellent energy resolution

 E_n (eV)

1

10

 10^{2}

 10^{3}

104

105

106

 $\Delta E_n/E_n$

 3.2×10^{-4}

 3.2×10^{-4}

 4.3×10^{-4}

 5.4×10^{-4}

 1.1×10^{-3}

 2.9×10^{-3}

 5.3×10^{-3}

DeltaE / E=

10⁻⁴ - 10⁻³

Common (n,g) measurements at	
n_TOF-EAR1:	

- Stable nuclei (or very long T_{1/2})
- Masses >=100 mg

[1] G. Aerts et al., <u>Phys. Rev. C 73, 054610 (2006).</u>

- [2] J. Lerendegui-Marco et al., Phys. Rev. C 97, 024605 (2018)
- [3] V. Babiano et al., EPJ Web of Conferences 284, 01001 (2023)

n_TOF-EAR1: key features for (n,g) & highlights

NTOF

Key features: High neutron energy limit for (n, y) + excellent energy resolution

Common (n,g) measurements at n_TOF-EAR1:

- Stable nuclei (or very long T_{1/2})
- Masses >=100 mg

Unstable isotopes? (e.g. s-process branching points)

[1] G. Aerts et al., <u>Phys. Rev. C 73, 054610 (2006).</u>

[2] J. Lerendegui-Marco et al., Phys. Rev. C 97, 024605 (2018)

[3] V. Babiano et al., EPJ Web of Conferences 284, 01001 (2023)

(n,g) at EAR1: unstable s-process branchings **CSI**

REVIEW OF MODERN PHYSICS, VOLUME 83, JANUARY-MARCH 2011

Sample	Half-life (yr)	Q value (MeV)	Comment	
⁶³ Ni	100.1	$\beta^{-}, 0.066$	C. Lederer et al., Phys. Rev. Lett. 110, 022501 (2013)	
⁷⁹ Se	2.95×10^{5}	$\beta^{-}, 0.159$	Important branching, constrains s-process temperature in massive stars	
⁸¹ Kr	2.29×10^{5}	EC, 0.322	Part of ⁷⁹ Se branching	
⁸⁵ Kr	10.73	$\beta^{-}, 0.687$	Important branching, constrains neutron density in massive stars	
⁹⁵ Zr	64.02 d	β^{-} , 1.125	Not feasible in near future, but important for neutron density low-mass AGB stars	
¹³⁴ Cs	2.0652	β^{-} , 2.059	Important branching at $A = 134, 135$, sensitive to <i>s</i> -process temperature in low-mass AGB stars, measurement not feasible in near future	
¹³⁵ Cs	2.3×10^{6}	$\beta^{-}, 0.269$	So far only activation measurement at $kT = 25$ keV by Patronis <i>et al.</i> (2004)	
¹⁴⁷ Nd	10.981 d	$\beta^{-}, 0.896$	Important branching at $A = 147/148$, constrains neutron density in low-mass AGB stars	
¹⁴⁷ Pm	2.6234	$\beta^{-}, 0.225$	Part of branching at $A = \frac{147}{148}$	
¹⁴⁸ Pm	5.368 d	$\beta^{-}, 2.464$	Not feasible in the near future	
¹⁵¹ Sm	90	$\beta^{-}, 0.076$	U. Abbondanno <i>et al.</i> , <u>Phys. Rev. Lett. 93, 161103 (2004)</u>	
¹⁵⁴ Eu	8.593	$\beta^{-}, 1.978$	Complex branching at $A = 154, 155$, sensitive to temperature and neutron density	
¹⁵⁵ Eu	4.753	$\beta^{-}, 0.246$	So far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1995)	
153 Gd	0.658	EC, 0.244	Part of branching at $A = 154, 155$	
¹⁶⁰ Tb	0.198	$\beta^{-}, 1.833$	Weak temperature-sensitive branching, very challenging experiment	
¹⁶³ Ho	4570	EC, 0.0026	Branching at $A = 163$ sensitive to mass density during s process, so far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1996b)	
¹⁷⁰ Tm	0.352	$\beta^{-}, 0.968$	Important branching, constrains neutron density in low-mass AGB stars	
¹⁷¹ Tm	1.921	$\beta^{-}, 0.098$	Part of branching at $A = 170, 171$	
¹⁷⁹ Ta	1.82	EC, 0.115	Crucial for s-process contribution to ¹⁸⁰ Ta, nature's rarest stable isotope	
¹⁸⁵ W	0.206	$\beta^{-}, 0.432$	Important branching, sensitive to neutron density and s-process temperature in low-mass AGB stars	
²⁰⁴ Tl	3.78	$\beta^{-}, 0.763$	Determines ²⁰⁵ Pb/ ²⁰⁵ Tl clock for dating of early Solar System	

F. Kaeppeler et al., *Rev. Mod. Phys* 83, 157 (2011)

Before 2015: only 2/21 of the key s-process isotopes measured by TOF 2015-2018: New unstable isotopes of astrophysical relevance (¹⁷¹Tm & ²⁰⁴TI) at CERN n TOF-EAR1

n_TOF-EAR1: (n,g) on unstable isotopes

s-process branching points: radioactive isotopes

PHYSICAL REVIEW LETTERS

n_TOF-EAR1: (n,g) on unstable isotopes

s-process branching points: radioactive isotopes

[1] A. Casanovas et al., Phys. Rev. Letters (2023, submitted)

the prompt de-excitation γ -rays emitted after each capture event, employing the standard setup at n_TOF of four C₆D₆ liquid scintillation detectors [42], which are optimized to minimize their neutron sensitivity [43]. Lead foils were placed on the detectors to reduce the impact of the γ -ray background arising from the ²⁰⁴Tl decay. By

Main limitations: Limited energy range due to mass, purity of the sample and background due to the sample activity → Higher flux facilities and high purity samples are required

(n,g) @ the n_TOF facility: EAR2

239Pu

PPAC

231Pa

241Am

²³⁰Th

³⁵Mn

16**O**

12C

MGAS

²³⁰Th

687n

⁸⁰Se

140Ce

35CI

205TI

2018

J. Lerendegui-Marco et al., Eur. Phys. J. A 52, 100 (2016).

(n,g) highlights at n_TOF-EAR2

(n,g) highlights at n_TOF-EAR2

106

105 106 107 Neutron energy (eV)

107

105

0.01

Res

103

03

104

104

Main limitations for (n,**y**):

- Limited energy resolution
- Resolution vs En difficult to model with simulations
- Impact on RP accuracy

Recent upgrades for (n,g) measurements

17th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, July 17-21 2023, Grenoble

n_TOF target upgrade (2019-2021)

TARGET #2: Water cooled and water moderated lead block

UPGRADED MECHANICAL PROPERTIES

- Avoid contamination
- Higher pulse intensity (+30%) and repetition rate **AIMED PHYSICS PERFORMANCE**
 - EAR1: Still excellent resolution and similar/ higher flux
 - EAR2: Improved RF + higher flux

TARGET #3: N-cooled and water moderated Pb target (cradle assembly)

. Lerendegui-Marco et al., EPJ Web of Conferences 284, 01028 (2023)

Before upgrade: EAR2 highest Instantaneous flux (FOM for neutron-to-activity ratio)

Neutron fluence enhancement with upgraded target:

 MC: +30-50% for EAR1 & EAR2 in the En range for (n,γ)

Before upgrade: EAR2 highest Instantaneous flux (FOM for neutron-to-activity ratio)

Neutron fluence enhancement with upgraded target:

 MC: +30-50% for EAR1 & EAR2 in the En range for (n,y)

CHALLENGES

- Even Higher flux at EAR2 \rightarrow Counting rate limit of detectors
- Neutron-induced background not solved with more flux
- Besides target upgrade → New Detector concepts are required!

J. Lerendegui-Marco et al., <u>EPJ Web of Conferences 284, 01028 (2023)</u>

E ININIOVACIÓN

sTED: segmented (n,g) detectors at EAR2

s-TED cell (49 mL)

s-TED cells in ring configuration

for optimized efficiency and SBR

Neutron energy (eV)

State-of-the-art detectors: Limited at the high-flux EAR2 by C. rates >=10MHz

y Tecnológicas

State-of-the art C₆D₆ TED

Solution: Segmentation of the volume Segmented State-of-the (s)TED C.D. (1 L Balibrea, EPJ Web of Conferences 279, 06004 (2023) ¹⁹⁷Au(n, y) Large C6D6 0.6-1 L Liquid ¹⁹⁷Au(n,γ) s-TED Counts/bin/7e12 protons Scintillator Cells SBR improved ~x4 V. Alcayne, EPJ Web of Conferences 284, 01043 (2023) 9 cells of 0.05 L Au 20x0.1 mm (factor 15-20 reduction) @ EAR2 10-1 Ciemat OE CIENCIA Enerpéticas, Medioambientales

i-TED: imaging applied to (n,γ) TOF experiments

i-TED: imaging applied to (n, γ) TOF experiments

i-TED: imaging applied to (n,γ) TOF experiments

nTOF

i-TED: imaging applied to (n,γ) TOF experiments

(n,γ) highlights after the latest upgrades

REVIEW OF MODERN PHYSICS, VOLUME 83, JANUARY-MARCH 2011

Sample	Half-life (yr)	Q value (MeV)	Comment	
⁶³ Ni	100.1	$\beta^{-}, 0.066$	TOF work in progress (Couture, 2009), sample with low enrichment	
⁷⁹ Se	2.95×10^{5}	$\beta^{-}, 0.159$	Important branching, constrains s-process temperature in massive stars	
°'Kr	2.29×10^{9}	EC, 0.322	Part of "Se branching	
⁸⁵ Kr	10.73	$\beta^{-}, 0.687$	Important branching, constrains neutron density in massive stars	
⁹⁵ Zr	64.02 d	β^{-} , 1.125	Not feasible in near future, but important for neutron density low-mass AGB stars	
¹³⁴ Cs	2.0652	$\beta^{-}, 2.059$	Important branching at $A = 134, 135$, sensitive to s-process temperature in low-mass AGB stars, measurement not feasible in near future	
135 Cs	2.3×10^{6}	$\beta^{-}, 0.269$	So far only activation measurement at $kT = 25$ keV by Patronis <i>et al.</i> (2004)	
¹⁴⁷ Nd	10.981 d	$\beta^{-}, 0.896$	Important branching at $A = 147/148$, constrains neutron density in low-mass AGB stars	
¹⁴⁷ Pm	2.6234	$\beta^{-}, 0.225$	Part of branching at $A = \frac{147}{148}$	
¹⁴⁸ Pm	5.368 d	$\beta^{-}, 2.464$	Not feasible in the near future	
¹⁵¹ Sm	90	$\beta^{-}, 0.076$	Existing TOF measurements, full set of MACS data available (Abbondanno et al., 2004a; Wisshak et al., 2006c)	
¹⁵⁴ Eu	8.593	$\beta^{-}, 1.978$	Complex branching at $A = 154, 155$, sensitive to temperature and neutron density	
¹⁵⁵ Eu	4.753	$\beta^{-}, 0.246$	So far only activation measurement at $kT = 25$ keV by Jaag and Käppe (1995)	
153 Gd	0.658	EC. 0.244	Part of branching at $A = 154, 155$	
¹⁶⁰ Tb	0.198	$\beta^{-}, 1.833$	Weak temperature-sensitive branching, very challenging experiment	
¹⁶³ Ho	4570	EC, 0.0026	Branching at $A = 163$ sensitive to mass density during s process, so far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1996b)	
¹⁷⁰ Tm	0.352	$\beta^{-}, 0.968$	Important branching, constrains neutron density in low-mass AGB stars	
¹⁷¹ Tm	1.921	$\beta^{-}, 0.098$	Part of branching at $A = 170.171$	
¹⁷⁹ Ta	1.82	EC, 0.115	Crucial for s-process contribution to ¹⁸⁰ Ta, nature's rarest stable isotope	
¹⁸⁵ W	0.206	$\beta^{-}, 0.432$	Important branching, sensitive to neutron density and s-process temperature in low-mass AGB stars	
²⁰⁴ Tl	3.78	$\beta^{-}, 0.763$	Determines ²⁰⁵ Pb/ ²⁰⁵ Tl clock for dating of early Solar System	

F. Kaeppeler et al., *Rev. Mod. Phys* 83, 157 (2011)

After upgrades (2021-2022): New unstable isotopes of astrophysical relevance (Se-79 & Nb-94) measured at n-TOF-EAR2

Neutron energy (eV)

(n,γ) highlights after the latest upgrades

Lerendegui-Marco, J. et al., EPJ Web Conf. 279, 13001 (2023).

Exiting limitations & future perspectives

17th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, July 17-21 2023, Grenoble

TOF (n,g) on s-process branchings: future

Towards more unstable s-process branching point isotopes: radioactive \rightarrow challenges

- 1. Difficult to produce in sizable quantities -> Low capture/background ratio
- 2. Activity implies a considerable radiation hazard.
- 3. Activity represents an intense source of background that excludes current **standard measuring techniques and current neutron beam facilities.**

Pm-147(n,γ) (PLB 2019)

<u>m = 85 ug</u> σ = 826 mb

Physics Letters B 797 (2019) 134809

n_TOF lowest mass record at that point! measurement features the smallest mass (85 μ g) ever measured at the n_TOF facility. The mass was unexpectedly small due to the deviations in the assumed value for the thermal capture cross section of ¹⁴⁶Nd (seed irradiated at ILL). For this reason n_TOF-EAR2 was chosen over EAR1, featuring the highest instantaneous neutron flux among time-of-flight facilities worldwide [25]. The small mass just allowed to clearly measure the three largest resonances (see left panel of Figure 4) and identify ten

TOF measurement not fully successful due to limited mass

TOF (n,g) on s-process branchings: future

Towards more unstable s-process branching point isotopes: radioactive \rightarrow challenges

- 1. Difficult to produce in sizable quantities -> Low capture/background ratio
- 2. Activity implies a considerable **radiation hazard**.
- 3. Activity represents an intense source of background that excludes current **standard measuring techniques and current neutron beam facilities.**

Very interesting unstable nuclei for the future: Eu-155, Ta-179, W-185

- First TOF measurement
- Low g-ray background
- Activities ~ 4-100 GBq for masses as low as 1e18 atoms

Isotope	Mass(ug)	Natoms	Activity (Gbq)	Decay / emitted g-rays
Eu-155	257.390	1.00E+18	4.70E+00	g<100keV, Qb<250keV
Ta-179	297.243	1.00E+18	1.21E+01	EC> no gamma
W-185	307.207	1.00E+18	1.07E+02	g<125 keV(lg = 0.02%), Qb:433 keV

TOF (n,g) on s-process branchings: feasibility limit **CSIC**

Estimated results in the upgraded n_TOF-EAR2 with the best sensitivity achieved so far with the STEDs

Limit: ~1e18 atoms (too high) currently required →We need higher sensitivity or new techniques!

Future: optimizing n_TOF-EAR2

Short term: Optimization campaigns at EAR2 & new ideas to improve the SBR for future experiments

NTOF

Future: optimizing n_TOF-EAR2

Short term: Optimization campaigns at EAR2 & new ideas to improve the SBR for future experiments

nTOF

NEAR: the new high flux facility

Physics at the NEAR: @ 3 m from spallation target

- High flux (x~100 EAR2 outside the collimator)
- Activation measurements
- Small mass
- Unstable isotopes
- e.g. s-process branchings not accessible via TOF

Astrophysical (n,g) measurements @ NEAR CSIC

Neutron spectra + filter (${}^{10}B$, ${}^{10}B_4C$, ...) after the collimator exit:

- s-process: Measure SACS @ various stellar temperatures from 0.1 to few hundreds of keV.
 - E. Stamati et al.,<u>CERN-INTC-2022-008;</u> <u>INTC-P-623 (2022)</u>: benchmark with long-lived (n,g) products

N. Patronis et al., arXiv (submitted to EPJ-C, 2023)

Astrophysical (n,g) measurements @ NEAR CSIC

Neutron spectra + filter (${}^{10}B$, ${}^{10}B_4C$, ...) after the collimator exit:

- s-process: Measure SACS @ various stellar temperatures from 0.1 to few hundreds of keV.
 - E. Stamati et al.,<u>CERN-INTC-2022-008;</u> <u>INTC-P-623 (2022)</u>: benchmark with long-lived (n,g) products

¹⁷¹Tm(n,g) example: state-of-the art LiLIT facility NEAR could measure much smaller masses

Future:

CYCLING : CYCLIc activation for (N,G) measurements

- Allows: activation with short lived targets (s, min) (n,g) products
- Repetition of short irradiation (ti) + rapid transport to detector (td) + counting the decay (tc) and transport back to the irradiating beam (tw)

Requisites

- Beam period: Rep. rate of n_TOF (max 0.8 Hz) is well suited for short lived (seconds)
- Operate a high resolution g-ray detector (ideally HPGe) in the harsh radiation environment in the NEAR bunker → characterization on-going [1]

[1] http://cds.cern.ch/record/2809131

Interesting cases for astrophysics:

- s-process/AGB: 107,109 Ag(n, γ), 26 Mg(n, γ), 50 Ti(n, γ), 19 F(n, γ), 60 Fe(n, γ)

i-process: ${}^{137}Cs(n,\gamma)$, ${}^{132}Te(n,\gamma)$,...

C. Domingo-Pardo, et al., *Eur. Phys. J. A* 59, 8 (2023)

Future: ISOLDE-n_TOF-NEAR Synergy

Goal:(n,g) on many unstable isotopes s and i- processes→ (still) unfeasible via TOF

Alternative: Produce samples of relevant unstable nuclei at ISOLDE & measure MACS at NEAR

- ISOLDE + NEAR (w/ CYCLING) : smaller production yields & shorter-lived isotopes would be accessible
- Examples: 59Fe, 134Cs, 135Cs, 148Pm, 154Eu, 155Eu, 160Tb, 170Tm, and 181Hf (s-process), Cs-137, 66Ni, 72Zn (i-process)

Future: ISOLDE-n_TOF-NEAR Synergy

Goal: (n,g) on many unstable isotopes s and i- processes \rightarrow **(still) unfeasible via TOF**

Alternative: Produce samples of relevant unstable nuclei at ISOLDE & measure MACS at NEAR

- ISOLDE + NEAR (w/ CYCLING) : smaller production yields & shorter-lived isotopes would be accessible
- Examples: 59Fe, 134Cs, 135Cs, 148Pm, 154Eu, 155Eu, 160Tb, 170Tm, and 181Hf (s-process), Cs-137, 66Ni, 72Zn (i-process)

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Production of a 135 Cs sample at ISOLDE for (n,γ) activation measurements at n_TOF-NEAR https://cds.cern.ch/record/2834566

Min mass: 2e15 at Molten La metal: $8.5e9 \text{ at/}\mu\text{C}$ ¹³⁵Cs → Among the 21 key s-nuclei listed in Kaeppeler, <u>Rev. Mod. Phys 83, 157 (2011)</u>

Summary

- Accurate neutron capture CS are key in various files such as nuclear technologies or in the s-process of stellar nucleosynthesis, for validating and constraining stellar nucleosynthesis models.
- (n,g) measurements at CERN-n_TOF:
 - **n_TOF EAR1**: Long standing facility, very high energy resolution and wide energy range (~MeV).
 - Radioactive nuclei (e.g. s-process branchings): dominant background from radioactivity.
 - Solution: Higher instantaneous flux facility \rightarrow n_TOF-EAR2

• Recent upgrades at n_TOF:

- n_TOF neutron source upgrade: More flux & improved E- resolution in EAR2
- New detection systems:
 - **s-TED:** segmented volume & enhanced sensitivity for high flux facilities (n_TOF EAR2)
 - i-TED: imaging applied to suppress n-induced background.
- Recent highlight after upgrades: Unstable ⁷⁹Se(n,g), key s-process branching \rightarrow stellar temperature
- Existing limitations & future perspectives:
 - Towards + unstable isotopes (<=ug samples) → Current limit for TOF: signal-to-background ratio
 - Future:
 - **Optimization of the** sensitivity in (n,g) **measurements at n_TOF EAR2**: setup, shieldings, collimator, ...
 - **NEAR**: New high flux facility for MACS activation measurements + **CYCLING**: access short-lived.
 - Synergy NEAR & ISOLDE: Produce low mass samples of unstable isotopes + activation

High sensitivitY Measurements of key stellar

Nucleo-Synthesis reactions
+ Info: https://hymnserc.ific.uv.es/public_documents

Grant FJC2020-044688-I funded by:

MINISTERIO DE CIENCIA E INNOVACIÓN

Thank you for you attention!

17th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, July 17- 21 2023, Grenoble

