

Recent Results from GRETINA and the Status of GRETA

Heather Crawford Nuclear Science Division, Lawrence Berkeley National Laboratory

17th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics – CGS17 July 18, 2023

Outline

- Recent Physics Campaigns of GRETINA
 - GRETINA campaigns with fast beams
 - First Experiments at FRIB
- Status of GRETA
 - Overview of GRETA systems
 - Project status
 - Transition from GRETINA to GRETA
- Summary and Outlook

GRETINA

Gamma-Ray Energy Tracking In-beam Nuclear Array

Between 2003 and 2011, the US low-energy nuclear physics community constructed GRETINA, a 1π tracking detector employing the same segmented detector and signal decomposition technology as GRETA.

GRETINA was a \$20M project funded by US DOE-Nuclear Physics Office

 Covered ~¼ of a sphere with 7 Quad Detector Modules

GRETINA science operations at MSU and ANL have demonstrated the technology and scientific impact of a γ -ray tracking array.

Added Quad Detector Modules – total of 12 (+ 1 spare)

History of GRETINA at NSCL

62 Experiments in 3 Campaigns

Collectivity

- Shape coexistence in N=20, 28, 40 Island of Inversion
- Shape changes and collectivity along the Ni isotopic chain, at N=Z...
- Transition rates and halo properties
- Electromagnetic transition rates to benchmark ab-initio calculations or large-scale shell-model approaches

Nuclear Astrophysics

- Precise energy measurements of resonances important for (p,γ) captures in the rp process
- Angle integrated measurement of (d,n) and (d,p) transfer reactions +mirror symmetry to constrain p capture rates for nucleosynthesis processes
- Constraining EC rates with (t,³He+γ) CEX reactions to understand core-collapse supernovae

Nuclear Shell Evolution

- Single-particle structure at *N=20*, *N=*28, *N=*40 from direct reactions
- Shell evolution along the Ca, Ni, Zn, ... isotopic chains from direct reactions
- Probing core excitations and shell-model cores with different methods

Developments

- Commissioning of GRETINA+S800
- Absolute γ-ray efficiency of GRETINA at 6MeV
- Beam for the EBSS 2017

Z=20

Z=8

The Experimental Setup at NSCL and FRIB

GRETINA + S800 (+ LH₂ target, + LENDA, ...)

35 -30

25 °02 × 15 × 10 -5.

Reactions induced by ²⁰Ne

The Experimental Setup at NSCL and FRIB

GRETINA + S800 (+ LH₂ target, + LENDA, ...)

Target Degrader

First GRETINA @ FRIB Campaign

14 Experiments Approved in 2 FRIB PACs

Collectivity

- Quadrupole Collectivity at the Boundaries of the *N*=40 Island of Inversion
- Evolution and isospin-dependence of quadrupole collectivity in the heaviest *N=Z*
- Measuring proton and neutron matrix elements for the transition in the N=28 nucleus ⁴²Si
- Search for the Isovector GMR via the ⁹⁰Zr(¹⁰Be,¹⁰B[0⁺,T=1]) reaction
- Collectivity at N=27

GRETINA and GRETA | CGS17

Z=20

Z=8

Nuclear Shell Evolution

- Single-neutron structure at the heart of the *N=28* island of inversion
- Halo formation in neutron-rich carbon isotopes
- Understanding shape and configuration
 coexistence at N=28
- Shape coexistence at the heart of the *N=40* island of inversion
- The structure of light tin isotopes

Nuclear Astrophysics

- Informing the i process: constraining the As/Ge abundance ratio in a metal poor star via ⁷⁵Ga(d,pγ)⁷⁶Ga
- Angle-integrated measurement of the d(²⁵Al,nγ)²⁶Si transfer reaction to probe resonance strengths in ²⁵Al(p,γ)²⁶Si relevant for ²⁶Al production in classical novae
- Constraining the Ni-Cu cycle in X-ray bursts and Core Collapse Supernovae: Spectroscopy of ⁶⁰Zn
- ⁸⁰Ge(d,pγ): Informing weak r-process neutron capture

FRIB Experiments to Date

6 Experiments Have Taken Beam So Far

- Shape coexistence in neutron-rich Cr isotopes
 - The N=40 Island of Inversion
- Nuclear structure toward ¹⁰⁰Sn
 - One-neutron knockout to figure out level orderings
- The curious case of ^{40,42}Si
 - Competing configurations in the *N*=28 Island of Inversion
 - Measuring proton and neutron matrix elements for the $0^+_{gs} \rightarrow 2^+_1$ transition in the deformed neutron-rich N=28 nucleus
- Evolution and isospin-dependence of quadrupole collectivity in the heaviest N=Z systems
- Constraining the Ni-Cu cycle
 - Spectroscopy of ⁶⁰Zn

Led by FRIB, U. Surrey and FSU (Gade, Tostevin, Weidenhoever et al.) with LBNL, LLNL, and Ursinus College

Shell Evolution at N=28

Testing Model Descriptions of ⁴²Si

- Motivation theory has been unable to describe
 ⁴²Si and different models disagree with each other
- Approach measure ⁴⁴S(-2p)⁴²Si reaction
- Initial beam time did not go to plan had to move to Plan B, namely ⁴²S(-2p)⁴⁰Si reaction

PHYSICAL REVIEW LETTERS 122, 222501 (2019)

Is the Structure of ⁴²Si Understood?

A. Gade,^{1,2} B. A. Brown,^{1,2} J. A. Tostevin,³ D. Bazin,^{1,2} P. C. Bender,^{1,*} C. M. Campbell,⁴ H. L. Crawford,⁴ B. Elman,^{1,2} K. W. Kemper,⁵ B. Longfellow,^{1,2} E. Lunderberg,^{1,2} D. Rhodes,^{1,2} and D. Weisshaar¹
 ¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
 ²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
 ³Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
 ⁴Nuclear Science Division, Lawrence Berkeley National Laboratory, California 94720, USA
 ⁵Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

Led by FRIB, U. Surrey and FSU (Gade, Tostevin, Weidenhoever et al.) with LBNL, LLNL, and Ursinus College

Shell Evolution at N=28

Testing Model Descriptions of ⁴²Si

- Motivation theory has been unable to describe
 ⁴²Si and different models disagree with each other
- Approach measure ⁴⁴S(-2p)⁴²Si reaction
- Initial beam time did not go to plan had to move to Plan B, namely ⁴²S(-2p)⁴⁰Si reaction
- Very rich data set
 - Interesting discrepancy between two different shell-model effective interactions and IM-SRG
 - Similar to the case of ⁴²Si where obviously the drivers of shell evolution are not understood

and MSU

Shape Coexistence in the N=40 Island of Inversion

Identifying the Excited 0⁺ Band-head in ⁶²Cr

- Longitudinal momentum distributions of ⁶²Cr in ⁹Be(⁶⁴Fe,⁶²Cr+γ) are sensitive to the final state total angular momenta
- 4⁺₁ and 6⁺₁ states prove approach

and MSU

Shape Coexistence in the N=40 Island of Inversion

Identifying the Excited 0⁺ Band-head in ⁶²Cr

- Longitudinal momentum distributions of ⁶²Cr in ⁹Be(⁶⁴Fe,⁶²Cr+γ) are sensitive to the final state total angular momenta
- 4⁺₁ and 6⁺₁ states prove approach; second 0⁺ located

Shape Coexistence in the *N*=40 Island of Inversion

Identifying the Excited 0⁺ Band-head in ⁶²Cr

- LNPS shell model effective interaction describes well the proposed level scheme
- DNO-SM study shows that triaxiality degree of freedom is important for γ band on top of the 2⁺₂ and the band on top of 0⁺₂

Led by U. Tenn. (Jones et al.) and FRIB with LBNL, LLNL, ORNL, and Rutgers.

Shell Evolution Towards ¹⁰¹Sn

The Structure of Light Sn Isotopes

The energy splitting between the ground and first excited states in the light, odd-mass tin isotopes is small, between 151 keV (¹⁰⁷Sn) and

200 keV (¹⁰⁵Sn). It is expected that the order of these states in ¹⁰¹Sn will be switched, with respect to ^{103, 105, 107}Sn.

One way to make spin and parity assignments for these states is to measure the momentum distributions in coincidence with γ rays depopulating the first excited state following a knockout reaction \rightarrow allows to distinguish the involved *g* and *d* neutron orbitals.

Spectroscopy of ⁶⁰Zn

Constraining the Ni-Cu cycle in X-ray bursts and Core Collapse Supernovae

The ⁵⁹Cu(p,g) reaction is expected to strongly influence the shape of X-ray burst light curves.

This process was studied via (d,n) transfer at FRIB using GRETINA, LENDA and the S800 spectrometer.

Outline

- Recent Physics Campaigns of GRETINA
 - GRETINA campaigns with fast beams
 - First Experiments at FRIB
- Status of GRETA
 - Overview of GRETA systems
 - Project status
 - Transition from GRETINA to GRETA
- Summary and Outlook

The Case for GRETA

The GRETA Physics Case Mirrors that of FRIB

Nuclear Structure	Nuclear Astrophysics	Tests of Fundamental Symmetries	Applications of Isotopes
Intellectual challenges from NRC Decadal Study 2013			
How does subatomic matter organize itself and	How did visible matter	Are fundamental interac-	How can the knowledge
			abou to portone oboloty .
 Shell structure ✓ Superheavies ✓ Skins ✓ Skins ✓ Pairing Symmetries ✓ Equation of state Limits of stability ✓ Limits of stability ✓ Weakly bound nuclei ✓ Mass surface ✓ New Structure ✓ Shell structure ✓ Equation of state Limits of stability ✓ Mass surface ✓ 	1. Shell structure \checkmark 6. Equation of state 7. r-Process \checkmark 8. $^{15}O(\alpha,\gamma)$ 9. 59 Fe s-process 13. Limits of stability \checkmark	 12. Atomic electric dipole moment 15. Mass surface 17. Weak interactions 	10. Medical11. Stewardship ✓
	15. Mass surface16. rp-Process17. Weak interactions ✓	✓ indicate topics where GRETA will be used.	

17 Benchmark programs introduced by the NSAC Rare-Isotope beam task force (2007).

Continuous
 100MHz
 digitization of 40
 preamplifier
 signals per crystal

Electronics Systems

• FPGA-based energy filters, event selection in response to physics triggers

• Continuous 100MHz digitization of **40** preamplifier signals **per crystal**

Electronics Systems

 FPGA-based energy filters, event selection in response to physics triggers

Continuous
 100MHz
 digitization of 40
 preamplifier
 signals per crystal

Electronics Systems

• FPGA-based energy filters, event selection in response to physics triggers

Continuous
 100MHz
 digitization of 40
 preamplifier
 signals per crystal

Electronics Systems

 FPGA-based energy filters, event selection in response to physics triggers

GRETA Computing Systems

Pipeline-Based Network Architecture Enables Cutting-Edge Performance

GRETA Computing Systems

Pipeline-Based Network Architecture Enables Cutting-Edge Performance

100G

- 300TB full SSD storage array ٠ improves ability to sort online, move data quickly off the cache to the DTN
- High-performance computing . cluster enables in-line compression and will support 500k signal decomposition calculations per second

GRETA Mechanical Systems

Motor-driven Translation + Rotation, LN and Two Closed-Loop Cooling Systems

Technical Progress

16/18 Detectors, 95% Complete Mechanical, Integration Starting Now

Beginning of GRETA Operations at FRIB

GRETA will be Delivered to FRIB in CY2025

Summary

- GRETINA has completed a total of 6 scientific campaigns at NSCL and ATLAS; the 7th campaign, and the first FRIB campaign is ongoing
- With over 100 publications since the start of operations 12 years ago, the scientific impact of GRETINA is unquestionable
- GRETA builds on the success of GRETINA with updated electronics and computing systems to enhance performance, and a full 120 HPGe crystals covering ~80% of the 4π solid angle
- GRETA is planned for delivery to FRIB in 2025 for first operations after integration with the GRETINA Quad detector modules

Thank You

And a special thanks to A. Gade and G. Lotay for sharing material from their experiments!