Structural Evolution of the Neutron-Rich Calcium Isotopes

Pieter Doornenbal ピーター ドーネンバル

CGS17, Grenoble, July 17–21, 2023

Outline

- Motivation
 - The N = 32, 34, 40 magic numbers
 - Evolution of neutron single particle energies
- Experimental description
 - RIBF, DALI2⁺, MINOS, SAMURAI, NeuLAND/NEBULA
- Results
 - Detailed spectroscopy of ⁵⁴Ca from (p,pn) and (p,2p) reactions
 - First spectroscopy of ^{56,58}Ca from (p,2p) reactions
 - Neutron single particle states in ^{51,53,55}Ca
- Summary

Effective Neutron Single Particle Energies

- ESPE calculations with A3DA-t and A3DA-m Hamiltonian
- Influence of $d_{5/2}$ and $g_{9/2}$? Is N = 40 magic?

• How "magic" are N = 32, 34 in ^{52,54}Ca?

• Ca: Closed proton shell \rightarrow Structure dominated by valence neutrons

Structural Evolution of the Neutron-Rich Calcium Isotopes

Shell Evolution at N = 32, 34

- Reduced attractive interaction between $\pi f_{7/2}$ and $\nu f_{5/2}$
- Possible development of new sub-shell closures at N = 32 and N = 34
- Observation of N = 32 sub-shell closure for ⁵²Ca, ⁵⁴Ti
- A single proton in $\pi f_{7/2}$ destroys N = 34 magicity!

D. Steppenbeck et al., Nature 502, 207 (2013). Prediction for N = 34 magic Number: T. Otsuka et al., PRL 87, 082502 (2001).

Observations for Ca Isotopes

• Significant N = 32, 34 shell closures:

- Large $E(2_1^+)$: ⁵²Ca: A. Huck et al., PRC 31, 2226 (1985). ⁵²Ca: A. Gade et al., PRC 74, 021302 (2006). ⁵⁴Ca: D. Steppenbeck et al., Nature 502, 207 (2013).
- Large shell gap Δ_{2n} : ⁵⁴Ca: F. Wienholtz et al., Nature 498, 346 (2013). ^{55–57}Ca: S. Michimasa et al., PRL 121, 022506 (2018).
- Small 0f_{5/2} occupation in g.s. of ⁵⁴Ca:
 S. Chen et al., PRL 123, 142501 (2019).
- Large charge radii question N = 32 shell closure: ⁵²Ca: R.F. Garcia Ruiz et al., Nature Physics 12, 596 (2016).
- First observation of ⁶⁰Ca:
 O. Tarasov et al., PRL 121, 022501 (2018).

Experimental Setup

Structural Evolution of the Neutron-Rich Calcium Isotopes

RIBF Overview

RIBF Overview

Shell Evolution And Search for Two-plus energies At RIBF (SEASTAR) at SAMURAI

- Simultaneous $E(2_1^+)$ measurement of ⁵²Ar, ^{56,58}Ca, and ⁶²Ti
- Many other isotopes within acceptance

Structural Evolution of the Neutron-Rich Calcium Isotopes

In-Beam Gamma-Ray Spectroscopy With a Liquid Hydrogen Target

A. Obertelli et al., EPJA 50, 8 (2014), S. Takeuchi et al., NIMA 763, 596 (2014).

Structural Evolution of the Neutron-Rich Calcium Isotopes

SEASTAR III at SAMURAI Particle Identification

- ⁷⁰Zn primary beam, 345 MeV/nucleon, 240 pnA, 8 days
- Secondary beam at 240 MeV/nucleon, $\delta p/p = \pm 3\%$
- ONE unique setting
- Total beam intensity: 200 pps
- ⁵³K: 0.8 pps, ⁵⁷Sc: 13.6 pps, ⁵⁹Sc: 0.3 pps, ⁶³V: 3 pps

SEASTAR III at SAMURAI Particle Identification

- ⁷⁰Zn primary beam, 345 MeV/nucleon, 240 pnA, 8 days
- Secondary beam at 240 MeV/nucleon, $\delta p/p = \pm 3\%$
- ONE unique setting
- Total beam intensity: 200 pps
- ⁵³K: 0.8 pps, ⁵⁷Sc: 13.6 pps, ⁵⁹Sc: 0.3 pps, ⁶³V: 3 pps

Detailed Spectroscopy of ⁵⁴Ca

Detailed Spectroscopy of ⁵⁴Ca from ⁵⁵Sc(p,2p)⁵⁴Ca and ⁵⁵Ca(p,pn)⁵⁴Ca

 55 Sc(p,2p) 54 Ca case:

First Spectroscopy of ⁵⁴Ca: D. Steppenbeck, S. Takeuchi et al., Nature 502, 207 (2013). This work: F. Browne, S. Chen et al., PRL 126, 252501 (2021). Theory: GXPF1Br interaction in full sd - pf - gds model space, DWIA for σ_{sp} and $P_{||}$

Structural Evolution of the Neutron-Rich Calcium Isotopes

Detailed Spectroscopy of ⁵⁴Ca from ⁵⁵Sc(p,2p)⁵⁴Ca and ⁵⁵Ca(p,pn)⁵⁴Ca

First Spectroscopy of ⁵⁴Ca: D. Steppenbeck, S. Takeuchi et al., Nature 502, 207 (2013). This work: F. Browne, S. Chen et al., PRL 126, 252501 (2021). Theory: GXPF1Br interaction in full sd - pf - gds model space, DWIA for σ_{sp} and $P_{||}$

Structural Evolution of the Neutron-Rich Calcium Isotopes

First Spectroscopy of 56,58Ca

Structural Evolution of the Neutron-Rich Calcium Isotopes

$E(2_1^+)$ Predictions in N-Rich Calcium Isotopes

$E(2_1^+)$ in ^{56,58}Ca from ⁵⁷Sc(p,2p)⁵⁶Ca and ⁵⁹Sc(p,2p)⁵⁸Ca

Structural Evolution of the Neutron-Rich Calcium Isotopes

 $E(2_1^+)$ in ^{56,58}Ca from ⁵⁷Sc(p,2p)⁵⁶Ca and ⁵⁹Sc(p,2p)⁵⁸Ca

	Experiment		τT	,	DWIA		VS-IMSRG			GXPF1Bs	
	Eexp	σ_{exp}	J^{*}	nl_j	$\sigma_{ m sp}$	E_{x}	$C^2 S_{th}$	σ_{th}	E_{x}	C^2S_{th}	
⁵⁶ Ca	0	0.80(6)	$0_{g.s.}^{+}$	$0f_{7/2}$	1.80	0	0.61	1.10	0	0.69	1.24
	1456(12)	0.43(4)	$\tilde{2}_1^+$	$0f_{7/2}$	1.74	1002	0.29	0.50	1416	0.25	0.44
			4_{1}^{+}	$0f_{7/2}$	1.73	1307	0.05	0.09	1776	0.02	0.04
	Inclusive	1.23(5)	-	,				1.69			1.72
⁵⁸ Ca	0	0.66(24)	$0_{g.s.}^{+}$	$0f_{7/2}$	1.58	0	0.80	1.26	0	0.83	1.31
	1115(34)	0.47(19)	2^+_1	$0f_{7/2}$	1.54	1075	0.16	0.25	1382	0.15	0.23
			4^{+}_{1}	$0f_{7/2}$	1.52	1423	0.001	0.002	1772	0.001	0.002
	Inclusive	1.14(15)	Ť	. , –				1.51			1.54

$E(2_1^+)$ Predictions in N-Rich Calcium Isotopes

First Spectroscopy of 56,58Ca

GXPF1Bs: Shell-model neutron *pf* shell

VS-IMSRG:
 Valence-space in-medium similarity renormalization group
 1.8/2.0 (EM) interaction neutron pf shell

 CC: Coupled-cluster theory Two-particle removed/attached equation-of-motion (2PR/2PA-EOM)

• A3DA-t: Revision of A3DA-m interaction fitted to existing $E(2_1^+)$ and S_{2n} data Neutron $pf - g_{9/2}d_{5/2}$ orbitals

First Spectroscopy of 56,58Ca

Predictions with A3DA-T

Sensitivity of the neutron $0g_{9/2}$ SPE \rightarrow variation of up to ± 2 MeV

- ◆ Positive shifts of 0g_{9/2} SPE

 → low E(2⁺₁) and S_{2n} of ⁵⁶Ca
 ◆ Negative shifts of 0g_{9/2} SPE
 - \rightarrow quenching of N = 34 shell gap

N = 40 Structure towards ⁶⁰Ca: ⁶³V(p,2p)⁶²Ti

M.L. Cortés, W. Rodriguez et al., Phys. Lett. B 800, 135071 (2020).

Structural Evolution of the Neutron-Rich Calcium Isotopes

N = 40 Structure towards ⁶⁰Ca: ⁶³V(p,2p)⁶²Ti

M.L. Cortés, W. Rodriguez et al., Phys. Lett. B 800, 135071 (2020).

Structure of Odd Ca Isotopes ^{51,53,55}Ca

The ⁵²Ca(p,pn)⁵¹Ca Reaction: Extended $1p_{3/2}$ Orbital and the N = 32 Shell Closure

- J. Bonnard et al., PRL 116, 212501 (2016): 0.7 fm size difference between $1p_{3/2}$ and $0f_{7/2}$
- Experimentally deduced 0.61(23) fm
- Level energies known from
 M. Rejmund et al. PRC 76, 021304(R) (2007)
- 0.6(3) mbarn cross section to state at 1720 keV

M. Enciu, H. Liu et al., PRL 129, 262501 (2022).

Summary

Structural Evolution of the Neutron-Rich Calcium Isotopes

Summary

- Ca isotopes ideal benchmark for nuclear structure and reaction theories
- Obtained comprehensive data set in n-rich nuclei around Z = 20
 - Spectroscopy of ^{51–58}Ca
 - Many other isotopes
- N = 32, 34 magic numbers
 - N = 32, 34 shell closures as strong as N = 28
 - Large rms radius for $1p_{3/2}$ orbital
- Approaching ⁶⁰Ca
 - Effective interaction LNPS reproduces $E(2_1^+)$, $E(4_1^+)$ along N = 40
 - $E(2_1^+)$ in Ca isotopes challenge theory
- Single particle strengths
 - Pure $0f_{7/2}$ strength in ^{52,54}Ca
 - Marginal occupation of $1p_{1/2}$ in ⁵²Ca and of $0f_{5/2}$ in ⁵⁴Ca

Thank You!

Structural Evolution of the Neutron-Rich Calcium Isotopes

Backup slides

Structural Evolution of the Neutron-Rich Calcium Isotopes