

CRAB (Calibrated Recoils for Accurate Bolometry at the 100 eV scale) on the shore of particle, nuclear and solid state physics

Particle physics

Nuclear physics

17-21 juillet 2023

Solid state physics

L. Thulliez on behalf of the CRAB collaboration

CEA-Saclay/DRF/Irfu/DPhN

loic.thulliez@cea.fr

17th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics,

NEW PHYSICS WITH DARK MATTER ?

- Moving to lower mass range
 detection of sub-keV nuclear recoil energy
- Sensitivity in large mass range approaching the neutrino-floor limit

COHERENT ELASTIC NEUTRINO-NUCLEUS SCATTERING (CEVNS)

• test SM (θ_{w} , etc) Proposed by D. Z. Freedman in 1974 [1] test BSM physics First detected by COHERENT in 2017 [2] (neutrino magnetic moment, non-standard interaction, etc) Not sensitive to neutrino flavors Measure nuclear form factor (neutron skin) Nuclear reactor monitoring Nuclear recoil E neutrino $\frac{d\sigma}{dE_{r}} = \frac{G_{F}^{2}}{4\pi} \left[N - Z \left(1 - 4\sin^{2}\theta_{W} \right) \right]^{2} F^{2}(Q^{2}) M \left[1 - \frac{ME_{r}}{2E_{w}^{2}} \right]^{2}$ Momentum transfer **Q** neutrino Target nucleus with radius R Weak nuclear charge Nuclear form factor **Kinematics** $sin^{2}(\theta_{w}) \sim 0,231$ Full coherency OR<1 Fulfill for E₀ < 30 MeV $\rightarrow N^2$ do/dE_r [10⁻¹⁶ barns.keV⁻¹] 10² → 1 = 4 MeV –W Ge 10¹ Reactor anti-neutrinos induce sub-keV energy Si \Rightarrow real challenge from the detector side \rightarrow good energy resolution ~ few eV 10° \rightarrow low energy threshold ~ few 10 eV 10-1 Examples : RICOCHET @ILL [3] NUCLEUS @Chooz nuclear power plant [4] 10-1 10° E, [keV]

[1] Freedman, Phys. Rev. D, 9, 5, 1974 [2] Akimov et al., Science, 357, 6356, 2017 [3] J. Billard et al., J. Phys. G, 44, 10 (2017) [4] R. Strauss et al., Eur. Phys. J., C77:506, 2017

HOW TO DETECT LOW ENERGY NUCLEAR RECOILS ?

Use of **cryogenic detector** operated at **few mK**

[1] H. Abele. et al., Phys. Rev. Lett. 130, 211802 (2023)[2] J. Rothe thesis 2020

Crysostat Bluefors LD400

WHAT HAPPEN AFTER A PRIMARY RECOIL IN THE DETECTOR ?

Complex solid state physics to understand for precise measurements

NEED SUB-keV CALIBRATION METHODS

State-of-the-art calibration techniques :

- mainly electron recoils for *in-situ* calibration with LED [1], XRF source BUT surface calibration
- alphas BUT surface calibration
- epithermal/fast neutrons produced at accelerator AND limited by TOF and angular precisions

What about thermal neutrons ?

gammas from (n, y) reaction

First indirect measurement by Jones and Kramer [2]

[1] L. Cardini et al., Eur. Phys. J. C 81 (2021) 7, 636.
[2] K.W. Jones and H.W. Kraner, Phys. Rev. A, 11 4, 1975

CRAB METHOD ^[1]

Thermal (~25meV) neutron radiative capture

The high-energy gamma leaves the cm scale detector without energy deposition

Advantages

- Pure nuclear recoil ⇒ mimic the neutrino/DM signal
- Allows to probe the whole bolometer
- Accuracy ⇒ well defined peak

However non-trivial nucleus de-excitation to simulate

- transition probability from \boldsymbol{S}_n to GS ?
 - \Rightarrow signal intensity
- multi-gamma/electron cascade ?
 - \Rightarrow background evaluation in the ROI
 - \Rightarrow dead-time (typical response time of ~ms for cryogenic detectors)

THE CRAB METHOD WHERE PARTICLE AND NUCLEAR PHYSICS MEET

FIFRELIN SIMULATION

Fission fragment de-excitation code developed at CEA-Cadarache [1]

EGAF, ENSDF, RIPL3 databases are key ingredients Gamma spectroscopy is important for particle physics !

FIFRELIN VALIDATIONS – HOME MADE HIGH ENERGY GAMMA SOURCE

Already validated in the STEREO experiment on Gd isotopes [1,2]

Discrepancies between data and MC less than 20 % for W isotopes **Confirmation of the FIFRELIN predictions : position and intensities of** the S_n gamma line from tungsten.

> [1] H. Almazán et al, Eur. Phys. J. A 55 (2019) 183 [2] H. Almazán et al, Eur. Phys. J. A 59 (2023) 75

STUDIED CRYO-DETECTOR MATERIALS

	Nuc		leus ^A X + n _{therm}		nal 💻	→ Nucleus ^{A+1} X + 9	
Crystal	Isotopes	Nat. ab. [%]	$\sigma_{_{(n,g)}}$ [barn]	Ι _{g0} [%]	FOM	S _n [keV]	Recoil [eV]
CaWO₄ CRESST NUCLEUS	182W 183W 184W 186W	26.5 14.3 30.6 28.4	20.3 9.9 1.6 37.9	13.9 5.8 1.5 0.3	7478 821 73 323	6191 7411 5754 5467	112.5 160.3 96.1 85.8
Ge EDELWEISS RICOCHET	⁷⁰ Ge ⁷⁴ Ge	20.5 36.5	3.1 0.5	2.0 2.8	127 51	7416 6506	416.2 303.2
Al ₂ O ₃ MINER NUCLEUS	²⁷ AI	100	0.2	26.8	536 🥥	7725	1145
Si SuperCDMS DAMIC SENSEI Skipper-CCD CONNIE	²⁸ Si ²⁹ Si ³⁰ Si	92.2 92.2 4.7 3.1	0.2 0.2 0.1 0.1	2.2 7.0 6.7 1.5	41 129 3 0.5	8473 7199+1274 10609 6587	1330 990 2016 752

Keep in mind :

- signal depends on detector resolution (σ)
 - \Rightarrow high resolution needed

PREDICTED NUCLEAR RECOIL SPECTRA – CaWO4

- Geant4 simulation based on TOUCANS [1] + FIFRELIN
- Mono-directionnal thermal neutron beam

Nuclear recoil spectrum in CaWO₄

FIRST MEASUREMENT CRAB / NUCLEUS COLLABORATIONS

NUCLEUS CaWO₄ cryo-detector $E_{th} = 50 \text{ eV}$ $\sigma(E) = 6 \text{ eV}$

Detector in a copper box spring decoupled from cryostat vibration

More copper to thermalize the detector below 100 mK **TES transition ~10 mK**

Thermal neutrons produced with a 3.7 MBq 252 Cf in a polyethylene and graphite moderator $\Rightarrow 0.25 \text{ n}_{th}/\text{s}$ on the cryo-detector

FIRST MEASUREMENT – RESULTS

Blind search peak

Test the presence of a peak

Background = 2 exponentials Signal = gaussian

Presence of a peak \Rightarrow 3.1 σ significance (2-sided)

 \rightarrow Background data lifetime = 18.9 h \rightarrow Source data lifetime = 40.2 h

Background = exponential fit to bkgd data Signal = GEANT4 + FIFRELIN

Presence of nuclear recoils from neutron capture $\Rightarrow 6\sigma$ significance (2-sided) $\Rightarrow \chi^2/NDF = 58.09/59$

FIRST MEASUREMENT CONFIRMED BY OTHERS !

CRESST = dark matter with CaWO₄ cryo-detector \rightarrow confirmation of our first CRAB signal with 3 detectors

https://arxiv.org/pdf/2303.15315.pdf Accepted in Phys. Rev. D in June 2023 **Super-CDMS** = dark matter with Si cryo-detector

 \rightarrow presence of nuclear recoils following thermal neutron captures

A. N. Villano, Phys. Rev. D, 105, 083014, 2022

CRAB has already a big impact in the dark matter and neutrino communities !

TIMING EFFECT WHERE NUCLEAR AND SOLID STATE PHYSICS MEET

Gabrielle Soum-Sidikov thesis

TIMING EFFECT – EXTREME HYPOTHESES

cea

GAMMA TIMING FROM RADIATIVE PARTIAL WIDTH Γ_{v}

 \rightarrow single particle approximation

 \rightarrow known to be inaccurate by a factor $\sim 10-100$ \Rightarrow no collective effects

 Γ_v with collective effect

Shell model : Kshell code + JUN45 interaction

TIMING EFFECTS – SILICON

Most of the half-live are in the databases (collective effects taken into account)

In-flight gamma emission

- \Rightarrow probe nucleus de-excitation time
- \Rightarrow probe inter-atomic potentials
- \Rightarrow do you remember with GRID at GAMS @ILL [1]?

Study of collision and γ -cascade times following neutron-capture processes in cryogenic detectors

Two- γ cascade robust against poorer energy resolution

[0] G. Soum-Sidikov, Study of collision and γ -cascade times following neutron-capture processes in cryogenic detectors, https://arxiv.org/abs/2305.10139 Submitted to Phys. Rev. D

[1] E. G. Kessler, Nucl. Instrum. Meth. A 457 (2001) 187:202

Study of collision and γ -cascade times following neutron-capture processes in cryogenic detectors

TIMING EFFECTS – GERMANIUM

G. Soum-Sidikov,¹ H. Abele,² J. Burkhart,³ F. Cappella,⁴ N. Casali,⁴ R. Cerulli,^{5,6} A. Chalil,^{1,7} A. Chebboubi,⁷ J-P. Crocombette,⁸ G. del Castello,^{9,10} M. del Gallo Roccagiovine,^{9,10} A. Doblhammer,² S. Dorer,² E. Dumonteil,¹ A. Erhart,¹¹ A. Giuliani,¹² C. Goupy,¹ F. Gunsing,¹ E. Jericha,² M. Kaznacheeva,¹¹ A. Kinast,¹¹ H. Kluck,³ A. Langenkämper,¹¹ T. Lasserre,^{1,11} A. Letourneau,¹ D. Lhuillier,¹ O. Litaize,⁷ P. de Marcillac,¹² S. Marnieros,¹² R. Martin,¹ T. Materna,¹ E. Mazzucato,¹ C. Nones,¹ T. Ortmann,¹¹ L. Pattavina,^{6,13} D.V. Poda,¹² L. Peters,¹¹ J. Rothe,¹¹ N. Schermer,¹¹ J. Schieck,^{2,3} S. Schönert,¹¹ O. Serot,⁷ L. Stodolsky,¹⁴ R. Strauss,¹¹ L. Thulliez,¹ M. Vignati,^{9,10} M. Vivier,¹ V. Wagner,¹¹ and A. Wex¹¹ (CRAB Collaboration)

In-flight γ emission \Rightarrow more calibration peaks

Resolution is a critical parameter !

Recoil energy spectrum sensitive to nuclear models \Rightarrow could help set constraints on models

[0] G. Soum-Sidikov, Study of collision and γ -cascade times following neutron-capture processes in cryogenic detectors, https://arxiv.org/abs/2305.10139 Submitted to Phys. Rev. D

Study of collision and γ -cascade times following neutron-capture processes in cryogenic detectors

TIMING EFFECTS – GERMANIUM

G. Soum-Sidikov,¹ H. Abele,² J. Burkhart,³ F. Cappella,⁴ N. Casali,⁴ R. Cerulli,^{5,6} A. Chalil,^{1,7} A. Chebboubi,⁷ J-P. Crocombette,⁸ G. del Castello,^{9,10} M. del Gallo Roccagiovine,^{9,10} A. Doblhammer,² S. Dorer,² E. Dumonteil,¹ A. Erhart,¹¹ A. Giuliani,¹² C. Goupy,¹ F. Gunsing,¹ E. Jericha,² M. Kaznacheeva,¹¹ A. Kinast,¹¹ H. Kluck,³ A. Langenkämper,¹¹ T. Lasserre,^{1,11} A. Letourneau,¹ D. Lhuillier,¹ O. Litaize,⁷ P. de Marcillac,¹² S. Marnieros,¹² R. Martin,¹ T. Materna,¹ E. Mazzucato,¹ C. Nones,¹ T. Ortmann,¹¹ L. Pattavina,^{6,13} D.V. Poda,¹² L. Peters,¹¹ J. Rothe,¹¹ N. Schermer,¹¹ J. Schieck,^{2,3} S. Schönert,¹¹ O. Serot,⁷ L. Stodolsky,¹⁴ R. Strauss,¹¹ L. Thulliez,¹ M. Vignati,^{9,10} M. Vivier,¹ V. Wagner,¹¹ and A. Wex¹¹ (CRAB Collaboration)

Resolution is a critical parameter BUT gamma coincidence allows to overcome this limitation !

[0] G. Soum-Sidikov, Study of collision and γ -cascade times following neutron-capture processes in cryogenic detectors, https://arxiv.org/abs/2305.10139 Submitted to Phys. Rev. D

HIGH PRECISION MEASUREMENTS – SOON IN 2024

Low intensity (~100 n_{th}/s) thermal neutron beam at TRIGA Mark-II nuclear reactor (250 kW) in Vienna

DO YOU REMEMBER SLIDE 14 ?

How to get a third peak at ~85 eV from the spectrum below ?

DO YOU REMEMBER SLIDE 14 ?

How to get a third peak at ~85 eV from the spectrum below ?

Y-tagging is a powerful tool to get a 3^{rd} peak for CaWO4 \Rightarrow **linearity study** !

CONCLUSION AND PERSPECTIVES

- CRAB method promising for a sub-kev calibration of the majority of cryo-detector materials in DM/CEvNS communities currently used (CaWO₄, Ge, Si, Al₂O₃)
- Successfull first measurement with a NUCLEUS CaWO₄ and a portable neutron source
 - \Rightarrow presence of a peak at ~112 eV with 3.1\sigma significance
 - \rightarrow Confirmation from independent measurement by the CRESST collaboration with higher significance

- \Rightarrow presence of nuclear recoils with 6 σ significance
- CRAB with gamma tagging is a powerul tool to increase S/B and access lower energy recoils, study the linearity of the bolometer response and tag the direction of the recoil (directionality)
- CRAB phase 2 / full precision in Vienna in preparation should be performed in 2024 ⇒ stay tuned !

THANK YOU

The CRAB collaboration