# Shape coexistence and mixing behind the isomers of <sup>94</sup>Pd

### **A. PETROVICI**

Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania

## **Outline**

• complex EXCITED VAMPIR beyond-mean-field variational model

- shape coexistence phenomena in N~Z nuclei near N=50
  - isomeric states in <sup>94</sup>Pd<sub>48</sub>
  - Gamow-Teller  $\beta$  decay of the 7<sup>+</sup> isomer in  ${}^{94}Ag_{47}$  feeding  ${}^{94}Pd_{48}$
  - superallowed Fermi  $\beta$  decay of the  $0^+$  ground state of  ${}^{94}Ag$  feeding  ${}^{94}Pd$

The heaviest proton-rich nuclei manifest exotic structure and dynamics generated by

- shape coexistence and shape mixing
- competing T=0 and T=1 proton-neutron and like-nucleon pairing correlations
- isospin symmetry breaking interactions

responsible for

drastic changes in structure with number of nucleons, spin, and excitation energy

## **Challenges for theory**

- realistic effective Hamiltonians in adequate model spaces
- beyond-mean-field methods aiming to
- unitary description of the evolution in structure at low, intermediate, and high spins
- comprehensive understanding of the structure phenomena and  $\beta$ -decay properties

## complex VAMPIR model family

- the model space is defined by a finite dimensional set of spherical single particle states
- the effective many-body Hamiltonian is represented as a sum of one- and two-body terms
- the basic building blocks are Hartree-Fock-Bogoliubov (HFB) vacua
- the HFB transformations are essentially *complex* and allow for proton-neutron, parity, and angular momentum mixing being restricted by time-reversal and axial symmetry (include natural- and unnatural-parity two-body correlations and T=1 and T=0 neutronproton pairing correlations already at the mean-field level )
- the broken symmetries (s=N, Z, I, p) are restored by projection before variation
- \* The models allow to use rather large model spaces and realistic effective interactions

# Beyond-mean-field variational procedure: complex Excited VAMPIR model

## VAMPIR approach

$$E^{s}[F_{1}^{s}] = \frac{\langle F_{1}^{s} | \hat{H} \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}$$
$$|\psi(F_{1}^{s}); sM \rangle = \frac{\hat{\Theta}_{M0}^{s} | F_{1}^{s} \rangle}{\sqrt{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}}$$

 $\Theta^{s}_{00}$  - symmetry projector |  $F^{s}_{l}$  > - HFB vacuum

## **Excited VAMPIR**

$$\begin{split} |\psi(F_i^s); sM\rangle &= \Sigma_{j=1}^i \left|\phi(F_j^s)\right\rangle \alpha_j^i \\ |\phi(F_i^s); sM\rangle &= \hat{\Theta}_{M0}^s |F_i^s\rangle \end{split}$$

for i = 1, ..., n - 1

Allows to identify in a small energy interval spherical, oblate, prolate deformed orthogonal configurations of a given symmetry.

$$\left|\psi(F_n^s); sM\right\rangle \ = \ \Sigma_{j=1}^{n-1} \left|\phi(F_j^s)\right\rangle \alpha_j^n + \left|\phi(F_n^s)\right\rangle \alpha_n^n$$

$$(H - E^{(n)}N)f^n = 0$$

 $(f^{(n)})^+ N f^{(n)} \, = \, 1$ 

Projected configurations significantly correlated could become strongly mixed by the final diagonalization.

 $|\Psi_{\alpha}^{(n)}; sM > = \sum_{i=1}^{n} |\psi_i; sM > f_{i\alpha}^{(n)}, \qquad \alpha = 1, ..., n$ 

## <sup>40</sup>*Ca* - *core*

model space for protons and neutrons
 1p<sub>1/2</sub> 1p<sub>3/2</sub> 0f<sub>5/2</sub> 0f<sub>7/2</sub> 1d<sub>5/2</sub> 0g<sub>9/2</sub>
(charge-symmetric basis + Coulomb contributions to the π-spe from the core)

## renormalized G-matrix (Bonn CD potential)

• *pairing properties enhanced by short range Gaussians for:*  T = 1 : pp(-35 MeV), np(-20 MeV), nn(-35 MeV)T = 0: np(-35 MeV)

• onset of deformation influenced by monopole shifts:

 $<0g_{9/2}$  0f; T=0 |G| 0g\_{9/2} 0f; T=0> (0f\_{5/2}, 0f\_{7/2})

 $<1d_{5/2}$  1p; T=0 |G| 1d<sub>5/2</sub> 1p; T=0> ( $1p_{1/2}$ ,  $1p_{3/2}$ )

• Coulomb interaction between valence protons added

Shape coexistence phenomena in  $N \sim Z$  nuclei near N=50:  ${}^{94}Pd_{48}$  case

A. S. Mare and A. Petrovici, Phys. Rev. C 106, 054306 (2022)

#### **Open questions:**

- nature of the isomeric states at spin  $8^+$  and  $14^+$  (irregularities in the spectrum)
- -feeding by the Gamow-Teller  $\beta$  decay of the 7<sup>+</sup> isomer in  ${}^{94}Ag_{47}$
- -feeding by the superallowed Fermi  $\beta$  decay of the 0<sup>+</sup> ground state of  ${}^{94}Ag_{47}$

Challenge: simultaneous description of all these phenomena within the same theoretical framework



#### Evolution of shape coexistence and mixing with increasing spin and excitation energy

| $I[\hbar]$        | oblate-content | prolate-content |
|-------------------|----------------|-----------------|
| $0_{1}^{+}$       | 91(4)%         | 4%              |
| $0^+_2$           | 86%            | 10%             |
| $2_{1}^{+}$       | 23(3)%         | 73%             |
| $2\hat{2}^+$      | 71%            | 24(3)%          |
| $4_{1}^{+}$       | 2%             | 93(3)%          |
| $4^{+}_{2}$       | 53(2)%         | 40(4)%          |
| $6_{1}^{+}$       | 9(2)%          | 87%             |
| $\hat{6_{2}^{+}}$ | 67(16)(5)%     | 7(5)%           |
| $6^+_3$           | 29(28)(20)(2)% | 13(4)(3)%       |
| $8_{1}^{+}$       | 77(7)%         | 9(5)%           |
| $\hat{8_{2}^{+}}$ | 66(15)(3)%     | 16%             |
| $8^{+}_{3}$       | 23(3)%         | 72%             |
| $10_{1}^{+}$      | 23(9)%         | 64%             |
| $12^+_1$          | 59(22)%        | 14(2)%          |
| $14_{1}^{+}$      | 95(2)%         |                 |

Structure of the wave functions of positive parity states in <sup>94</sup>Pd

| Spectroscopic quadrupole moments (efm <sup>2</sup> )<br>for positive parity states in <sup>94</sup> Pd |                       |                                                        |                      |  |
|--------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------|----------------------|--|
| $I[\hbar]$                                                                                             |                       | $I[\hbar]$                                             |                      |  |
| $2^+_1 2^+_2$                                                                                          | -9.5<br>12.4          | $\begin{array}{c} 8^+_1 \\ 8^+_2 \\ 8^+_3 \end{array}$ | 50.4<br>36.8<br>-8.9 |  |
| $\begin{array}{c} 4_1^+ \\ 4_2^+ \end{array}$                                                          | $-37.5 \\ 1.5$        | $10^+_1$                                               | 15.3                 |  |
| $egin{array}{c} 6_1^+ \ 6_2^+ \ 6_3^+ \end{array}$                                                     | -28.9<br>36.3<br>19.1 | $12_{1}^{+}$<br>$14_{1}^{+}$                           | o.5<br>45.6          |  |

| $I[\hbar]$ | yrast band   | first excited band |
|------------|--------------|--------------------|
| $2^+$      | 367          | 426                |
| $4^{+}$    | 383(81)      | 213(104)[134]      |
| $6^+$      | 336[105]     | 240(99)            |
| 8+         | 165[60][111] | 118(31)[51]        |
| $10^{+}$   | 278[34]      |                    |
| $12^{+}$   | 160[32]      |                    |
| $14^{+}$   | 56           |                    |

#### $B(E2;I \rightarrow I-2)$ values ( $e^{2}fm^{4}$ ) for the lowest bands in ${}^{94}Pd$

 $T^{EXP}_{1/2} (8^+ \to 6^+) = 1.2(3) \text{ ns}$   $B^{EXP}(E2; 8^+ \to 6^+) = 130(30) e^2 fm^4$   $B^{EXVAM}(E2; 8^+ \to 6^+) = 165 e^2 fm^4$   $T^{EXP}_{1/2} (14^+ \to 12^+) = 499(9) \text{ ns}$   $B^{EXP}(E2; 14^+ \to 12^+) = 53(1) e^2 fm^4$   $B^{EXVAM}(E2; 14^+ \to 12^+) = 56 e^2 fm^4$ 

B(E2) ( $e^2 fm^4$ ) and B(M1) ( $\mu^2_B$ ) values for the lowest 6<sup>+</sup> and 8<sup>+</sup> states in <sup>94</sup>Pd





## E0 transitions for the lowest $0^+$ and $2^+$ states: fingerprints of shape coexistence and mixing

| Transition                                                                                                                | EXVAM                     |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------|
| $egin{aligned} & ho^2(E0;0^+_2 	o 0^+_1) \ & ho^2(E0;0^+_3 	o 0^+_1) \ & ho^2(E0;0^+_3 	o 0^+_2) \end{aligned}$           | $0.019 \\ 0.007 \\ 0.005$ |
| $\rho^{2}(E0; 2^{+}_{2} \to 2^{+}_{1}) \\ \rho^{2}(E0; 2^{+}_{3} \to 2^{+}_{1}) \\ \rho^{2}(E0; 2^{+}_{3} \to 2^{+}_{2})$ | $0.022 \\ 0.011 \\ 0.008$ |

 $\rho^2$  values for  $0^+$  and  $2^+$  states in  ${}^{94}Pd$ 

#### Evolution of the occupations of valence spherical orbitals for positive parity states in <sup>94</sup>Pd



Occupation of valence spherical orbitals for the yrast band

Particular changes in the  $0g_{9/2}$ ,  $1p_{1/2}$ , and  $1p_{3/2}$ occupations at the  $8^+$  isomer, but not for the  $14^+$  isomer

Occupation of valence spherical orbitals for  $6^{\scriptscriptstyle +}\,and\,8^{\scriptscriptstyle +}\,states$ 



Significant changes in the  $0g_{9/2}$ ,  $1p_{1/2}$ , and  $1p_{3/2}$  occupations for the lowest three  $6^+$  as well as  $8^+$  states

#### Evolution of the alignment in the lowest bands in <sup>94</sup>Pd







#### Alignment plot - extended

 $g(8^{+}_{1}) = 1.22 \qquad g(8^{+}_{2}) = 0.37 \qquad g(8^{+}_{3}) = 0.70$  $g(10^{+}_{1}) = 1.03$  $g(12^{+}_{1}) = 0.85$  $g(14^{+}_{1}) = 0.53$ 

#### Weak interaction rates: self-consistent treatment

Fermi transition probabilities

$$B_{if}(F) = \frac{1}{2J_i + 1} \frac{g_V^2}{4\pi} |M_F|^2$$
$$M_F \equiv (\xi_f J_f || \hat{1} || \xi_i J_i)$$
$$= \delta_{J_i J_f} \sum_{ab} M_F(ab) (\xi_f J_f || [c_a^{\dagger} \tilde{c}_b]_0 || \xi_i J_i)$$
$$M_F(ab) = (a || \hat{1} || b)$$

**Gamow-Teller transition probabilities** 

$$B_{if}(GT) = \frac{1}{2J_i + 1} \frac{g_A^2}{4\pi} |M_{GT}|^2$$
$$M_{GT} \equiv (\xi_f J_f ||\hat{\sigma}||\xi_i J_i)$$
$$= \sum_{ab} M_{GT}(ab)(\xi_f J_f ||[c_a^{\dagger} \tilde{c}_b]_1||\xi_i J_i)$$
$$M_{GT}(ab) = 1/\sqrt{3}(a||\hat{\sigma}||b)$$

Independent chains of variational calculations for the parent and daughter states



Fermi strength distribution for the decay of the  $0^+_{gs}$  in  ${}^{94}Ag$  to  $0^+$  states in  ${}^{94}Pd$ 

#### 1.32% depletion of the ground to ground decay

Interplay between shape mixing and isospin symmetry violation effects on superallowed Fermi  $\beta$  decay

## Gamow-Teller $\beta$ decay of the 7<sup>+</sup> isomer in <sup>94</sup>Ag to <sup>94</sup>Pd



 $^{94}Ag: 7^+$  isomer - 91% oblate content  $Q_{sp}(7^+) = 75.8 \ efm^2$  $g(7^+) = 0.54$ 

Spectroscopic quadrupole moments of 6<sup>+</sup> Gamow-Teller daughter states in <sup>94</sup>Pd



Spectroscopic quadrupole moments of 8<sup>+</sup> Gamow-Teller daughter states in <sup>94</sup>Pd



Contributions: - dominant:  $g^{v}_{9/2} g^{\pi}_{9/2}$ , small:  $d^{v}_{5/2} d^{\pi}_{5/2}$  and  $p^{v}_{1/2} p^{\pi}_{3/2}$  matrix elements (6<sup>+</sup>states) - dominant:  $g^{v}_{9/2} g^{\pi}_{9/2}$ , small:  $p^{v}_{1/2} p^{\pi}_{3/2}$ ,  $p^{v}_{3/2} p^{\pi}_{1/2}$ ,  $p^{v}_{3/2} p^{\pi}_{3/2}$  matrix elements (8<sup>+</sup>states)



the 7<sup>+</sup> isomer in  ${}^{94}$ Ag to 6<sup>+</sup> and 8<sup>+</sup> states in  ${}^{94}$ Pd

$$P_{p} = \frac{\sum_{S_{p}}^{Q_{EC}} f(Z, E_{f}) B(GT, E_{f})}{\sum_{0}^{Q_{EC}} f(Z, E_{f}) B(GT, E_{f})} \qquad Q_{EC} = 14.4 \, MeV \qquad S_{P} = 4.378 \, MeV(^{94}Pd)$$

$$P_{p}^{exp} = 20\% \qquad P_{p}^{EXVAM} = 27\%$$

$$\frac{1}{T_{1/2}} = \frac{1}{K} \sum_{E_f} f(Z, E_f) B_{if}(GT)$$

$$T^{exp}_{1/2} (7^+ \text{ isomer in } {}^{94}Ag) = 0.55(6) \text{ s}$$
  
 $T^{EXVAM}_{1/2} (7^+ \text{ isomer in } {}^{94}Ag) = 0.28 \text{ s}$ 

## **Summary**

Comprehensive understanding of shape coexistence phenomena in proton-rich nuclei close to N=50 within the complex Excited Vampir beyond-mean-field variational model

- the evolution of shape coexistence and mixing in the structure of positive parity states in  ${}^{94}Pd_{48}$
- the nature of the isomeric states at spin  $8^+$  and  $14^+$
- the complex decay pattern of the lowest three 6<sup>+</sup> and 8<sup>+</sup> states
- the feeding of the intermediate spin states in <sup>94</sup>Pd by the Gamow-Teller  $\beta$  decay of the 7<sup>+</sup> isomer in <sup>94</sup>Ag
- the feeding of the ground state as well as the nonanalog states in <sup>94</sup>Pd by the superallowed
   Fermi β decay of the 0<sup>+</sup> ground state in <sup>94</sup>Ag