

Exploring the emergence of nuclear collectivity through moments and monopoles

Andrew Stuchbery

Department of Nuclear Physics & Accelerator Applications The Australian National University

Outline/Overview

Introduction

 Emerging collectivity near ¹³²Sn: Te g factors E0s and B(E2)s

Conclusions

Recent ANU nuclear structure focus

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

How does subatomic matter organize itself and what phenomena emerge?

Dancing in Unison

It is remarkable that a heavy nucleus consisting of hundreds of rapidly moving protons and neutrons can exhibit a regular behavior, reflecting collective properties of many nucleons operating together.

Key contributions at ANU:

- Magnetic moments (AES)
- Electric monopole (E0) transitions (Tibor Kibédi)
- Electromagnetic transition rates (e.g. E6 in ⁵³Fe) lifetimes; Coulomb excitation) (Greg Lane)
- Transfer reactions (AJ Mitchell)

Probes and path of emerging collectivity

Australian

National <u>Univer</u>sity

Outline/Overview

Introduction

 Emerging collectivity near ¹³²Sn: Te g factors E0s and B(E2)s

Conclusions

Why Tellurium?

- Near ¹³²Sn shape coexistence is not a key factor
- A long sequence of stable isotopes (¹²⁰⁻¹³⁰Te) accessible for Coulex and Transient Field g-factor measurements
- Z=52 tractable for SM calculations near N=82
- Extensive data from (n,n'γ) from Kentucky group,
 - Erin Peters et al. PRC 99, 064321 (2019)
 - Sally Hicks et al. PRC 105, 024329 (2022)
- Level structures show transition from $\pi(g_{7/2})^2$ structure at N=82 (¹³⁴Te) to vibrational-like at ¹²⁰Te

Experimental levels Te isotopes

Australian

National University

Experimental levels Te isotopes

Australian

National University

Magnetic moments & nuclear structure

$$\int \int \int f s \mu = g_l l + g_s s$$

g factor: $g = \mu/J$

Orbital g factors: $g_l(p) = 1$; $g_l(n) = 0$

Spin g factors:
$$g_s(p) = +5.586$$
; $g_s(n) = -3.826$

• indicate how the nucleus carries its angular momentum

- distinguish between proton versus neutron excitations
- for few-particle states g factors typically vary from ~ -0.5 to $\sim +1.5$

rotation →axis

g factors of collective states

Assume spin contributions cancel:

In collective models the g factor measures the fraction of the spin carried by the protons

Bohr collective model

(vibrations/rotations of charged spheroid):

Generally observed :

$$g \approx \frac{Z}{A} \approx 0.4$$

 $g \approx 0.8 \frac{Z}{A} \approx 0.3$

Even-even collective nuclide: all states have the <u>same</u> g factor

g factors: shell model & collectivity

Nushellx with jj55pn interactions from Alex Brown – PRC **71**, 044317 (2005) Data: ANU & ORNL: PRL **94**, 192501 (2005); PRC **76**, 034306 (2007); PRC **76**, 034307 (2007); PRC **88**, 051304(R) (2013)

Transient-field g-factor measurements

- Coulomb excitation
- TF (~ few kT) acts as ion traverses Fe layer
- Measure g(4⁺) relative to g(2⁺)
- g(2⁺) from PRC **76**, 034306 (2007)

Measuring small precession angles

Place detectors on opposite sides of the beam line, reverse the magnetic field frequently, and form double ratios

Apparatus: "Hyperfine spectrometer"

Australian

Apparatus

A view of the hyperfine spectrometer on the beam line with 4 clover detectors for the $^{124-130}$ Te 4⁺ g-factor measurements

In the lab @ ANU: Te g-factor runs

Georgi Georgiev, AES (making Tim Gray, Ben Coombes targets)

Fixing things in the night!

Gamma-ray spectra

Ben Coombes PhD 2021

Two-step Coulex is weak!

Inverse kinematics Coulex at HRIBF (ORNL)

measurements at ANU

¹²⁴Te – General Collective Model (GCM)

GCM: fit to lowest 10 levels RMS deviation 134 keV

B(E2)↑	comparison:	exp	&	theory
--------	-------------	-----	---	--------

$0 \rightarrow 2$	0.571	0.564 🗸
$2 \rightarrow 4$	0.243	0.368 ×
$4 \rightarrow 6$	0.165	0.398 ×
$2 \rightarrow 2$	0.121	0.136 🗸

Q(2⁺) comparison: exp & theory -0.45 -0.44 ✓

GCM over predicts $6^+ \rightarrow 4^+$ transition

Shell model better: predicts $g(6^+) \approx \pi g_{7/2}$ value

We need to measure the 6⁺ g factors

g(6⁺) in ¹³⁰⁻¹³⁴Te – ILL experiment

 $\gamma\gamma$ TDPAC after β decay.

G Georgiev et al. ILL (3-01-724)

Important to extend to ^{130,128,126...} Te

Rotational invariants – Kumar-Cline sum rules

Deformation: a sum of B(E2) values $\langle i | [E2 \otimes E2]_0^{(0)} | i \rangle = \frac{1}{\sqrt{5}} \frac{1}{2I_i + 1} \sum_t |\langle i || E2 || t \rangle |^2$ $= \frac{1}{\sqrt{5}} \langle Q^2 \rangle.$

Triaxiality

$$\langle i | [[E2 \otimes E2]^{(2)} \otimes E2]_0^{(0)} | i \rangle = -\sqrt{\frac{2}{35}} \langle Q^3 \cos(3\delta) \rangle.$$

Determine the shape of each nuclear state

Also the variance around the average shape

K. Kumar, Phys. Rev. Letters 28, 249 (1972)D. Cline, Annu. Rev. Nucl. Part. Sci. 36, 683 (1986)

Shell model calculations + Kumar-Cline evaluation of shape parameters:

- Deformation increases with valence nucleons
- All states appear triaxial but soft

Australian

National University

• The shape is not rigid and g factors etc. show these nuclei are not triaxial rotors; but the low-excitation states have an average triaxial shape

Everything looks triaxial! Possible path of emerging collectivity: spherical \rightarrow weakly-deformed triaxial \rightarrow well-deformed prolate?

Hints of shape coexistence

Super-e: IC & Pair spectrometer

Super-e: IC & Pair spectrometer

For internal conversion: "Unthred" Si(Li) - cooled FET, 1.8 keV resolution at 622 keV

 ^{124}Te populated in ^{124}Sb β decay $T_{1/2}$ = 60 d.

Source prepared by neutron irradiation of ¹²³Sb in OPAL reactor (Sydney)

Magnetic field swept

¹²⁴Te Conversion Electrons

Previous 0_2^+ from (n, γ) J.Phys. G **12**, 881 (1986)

Shape co-existence in ⁴⁰Ca

ANU Super-e measurements

PHYSICAL REVIEW LETTERS 128, 252501 (2022)

Electric Monopole Transition from the Superdeformed Band in ⁴⁰Ca

E. Ideguchi (井手口 栄治),^{1,*} T. Kibédi,² J. T. H. Dowie,² T. H. Hoang,¹ M. Kumar Raju,^{1,3} N. Aoi (青井 考),¹ A. J. Mitchell,⁶ A. E. Stuchbery,⁶ N. Shimizu (清水 則孝),^{6,4,†} Y. Utsuno (宇都野 穣),^{5,4} A. Akber,² L. J. Bignell,² B. J. Coombes,⁶ T. K. Eriksen,⁶ T. J. Gray,⁶ G. J. Lane,⁶ and B. P. McCormick,⁶

Shape co-existence in ⁴⁰Ca

Figure credit: Eiji Ideguchi

- Significant mixing between co-existing shapes
- 3-state mixing leads to destructive interference

¹²⁴Te Conversion Electrons

Comparison of E0 strengths

$$2_2^+ \rightarrow 2_1^+$$
 shows E0 strength: $10^3 \rho^2 = 100^{+40}_{-30}$

Cf. Ni isotopes, for example:

From Evitts et al. Physics Letters B779 (2018) 396

Outline/Overview

Introduction

 Emerging collectivity near ¹³²Sn: Te g factors E0s and B(E2)s

Conclusions

Conclusions / Next steps

Conclusions

- Collectivity seems to build up from lowest 2⁺ state, whereas the seniority structure seems to persist longer in the 4⁺ and 6⁺ states
 Pre-collective level structures cannot force collective models
- $g(4^+)/g(2^+)$ suggest $R_{42} \sim 2.1$ is correlated with emerging collectivity in ¹²⁴⁻¹³⁰Te, but E2 rates show that this is not vibrational collectivity
- Overall, shell model descriptions are good, but there is evidence of more collectivity than accounted for by the shell model (SM) - even with effective charges
- Investigate triaxiality (Coulex and Kumar-Cline)
 - \circ Q(2⁺) not well reproduced in the SM calculations
 - Does the use of effective charges in the SM compromise the evaluation of Kumar-Cline sum rules?
- Measure g(6⁺) in Te isotopes ILL 3-01-724
- Measure E0 transitions comprehensive studies to get ρ^2

To do ...

General Conclusions

- Some nuclei between near-spherical and well-deformed are better described as pre-collective than weakly collective
 - States that are dominated by seniority coexist with states that are becoming collective.
 - These weakly collective nuclei appear to favour an average triaxial shape: Is the pathway from near-spherical doubly magic nuclei to rotors: spherical → weakly-deformed triaxial → well deformed prolate?
- Shape co-existence and shape mixing are critical but not well characterized: need E0 transitions, g factors & quadrupole moments, along with B(E2)s

Acknowledgments

The ANU Nuclear Structure Group

Tibor Kibédi, Greg Lane, Georgi Georgiev (on sabbatical from CSNSM in 2018-19), AJ Mitchell, Lindsey Bignell, Jackson Dowie, Tim Gray, Ben Coombes, Brendan McCormick, Martha Reece

John Wood (ideas and discussion)

Mitch Allmond (ORNL)

This work was supported by the **Australian Research Council** Grants Nos. DP0773273, DP120101417, DP130104176, DP140102986, DP140103317, DP170101673, DP210101201 and FT100100991.

Support for the ANU Heavy Ion Accelerator Facility operations through the Australian **National Collaborative Research Infrastructure Strategy** (NCRIS) program is acknowledged.

Tim & Ben

END