Location of the general anesthetics in model membranes

P. Hrubovčáka,b, T. Kondelaa,c, B. Deméd, N. Kučerkaa,c
aFrank Laboratory of Neutron Physics, Joint Institute for Nuclear Research in Dubna, Russia
bInstitute of Physics, Faculty of Sciences, P. J. Šafárik University, Park Angelinum 9, 041 54 Košice, Slovakia
cFaculty of Pharmacy, Comenius University in Bratislava, Slovakia
dInstitute Laue-Langevin in Grenoble, France

Acknowledgement
This work has been supported by the VEGA grants 1/0916/16 and 1/0228/17, JINR topical themes 04-4-1121-2015/2020 and 04-4-1133-2018/2020, and APVV project 17-0239. We thank the staff of Institute Laue-Langevin, Bruno Demé in particular, for support and help during experimental run at D16 small momentum transfer diffractometer. Access to the computational heterogeneous cluster HybriLIT was provided by Joint Institute for Nuclear Research.

Motivation
- alkanes and alifatic alcohols
- anesthetic effect
- interactions between membrane constituents
- structural changes
- correlation:
 - thickness
 - functions
- Assumption: The location and orientation of decane molecules within the bilayer depends on their concentration

Sample preparation
- \textbf{n-decane} and DOPC mixed in organic solution in two different molar ratios \textit{1:1, 2:1}
- decane molecules employed: deuterium-\textbf{labeled} and \textbf{unlabeled}
 - After the evaporation of the organic solvent, model bilayers were formed and subsequently hydrated by water vapor

Experiment
- D16 - Small momentum transfer diffractometer, ILL, (\(\lambda = 4.55 \text{ Å}\))
- Samples rocked at fixed detector position
- Four different H\textsubscript{2}O:D\textsubscript{2}O scattering contrasts utilized

Data evaluation
- Determination of inter-layer repeat distance (d-spacing) \(d = 2\pi n/q\)
- Fitting the rocking curves to the Gauss + Lorentz function
- Determination of form factor related to the area of the peak

Bilayer profile reconstruction
- Neutron scattering length density profiles are related to the scattering form factors through their Fourier inversion.

Difference of the corresponding NSLD profiles
- Distribution of the label
- Area ~ amount of the label

Conclusions
- \textbf{n-decane} – located in the hydrocarbon chains, mainly in the centre of bilayer
- No significant change in \textbf{n-decane} distribution when compared systems with 1:1 and 2:1 decane:DOPC molar ratios
- Areas under the curves – correspond to the ammount of label utilised
- Results - supported by molecular dynamics simulations