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Some books to help

Fundamental ones: Also important ones:
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What is light?
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Is the light coherent?
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Is the sunlight coherent?

Coherent Area (Ac) ∼ 4 × 10–3
mm

2

https://skullsinthestars.com/2010/06/12/you-could-learn-a-lot-from-a-ducky-the-van-cittert-zernike-theorem/

S. Divitt and L. Novotny, Optica 2(2), 95-103 (2015)
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The light of a star

Coherent Area (Ac) ∼ 6 m
2

https://skullsinthestars.com/2010/06/12/you-could-learn-a-lot-from-a-ducky-the-van-cittert-zernike-theorem/
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The van Cittert-Zernike theorem

https://youtu.be/4o48J4streE

W. H. Knox, M. Alonso, E. Wolf, Physics Today 63, 3, 11 (2010)



Transverse Coherence

Diffraction patterns from two narrow slits at distance d, originating from the central
part of the source (solid curve) and from the edge of the source at height w/2 (dashed
curve). The slit distance d is such that the two patterns are in antiphase at d = λR/w .
This is defined as transverse coherence length:

ξt =
λR

w

F. van der Veen, F. Pfeiffer, J. Phys.: Condens. Matter 16 (2004) 5003.
J. Goodman, Statistical Optics (book)
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ID16A Nano-Imaging beamline - ESRF

For E = 17.05keV :

ξtv =
λR

w
≈ 611.6 µm ξth =

λR

w
≈ 210.9 µm

J. C. da Silva, et al., J. Synchrot. Radiat. 26, 1751-1762 (2019)

Page 10 | September 18, 2019 | J. C. da Silva - Summer School 2019



Longitudinal Coherence

One has Nλ = (N – 1/2)(λ + ∆λ). Solving for N and substituting in ξl = Nλ we find
the longitudinal coherence length:

ξl =
1

2

λ2

∆λ

F. van der Veen, F. Pfeiffer, J. Phys.: Condens. Matter 16 (2004) 5003.
J. Goodman, Statistical Optics (book)

Page 11 | September 18, 2019 | J. C. da Silva - Summer School 2019



Classical X-ray experiments
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Beam coherence

Incoherent waves with different frequencies (not monochromatic)
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Absorption vs. Phase contrast
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Absorption vs. Phase contrast
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Absorption vs. Phase contrast
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Different X-ray imaging regimes
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Different X-ray imaging regimes
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Speckles

∆θ ≈
λ

a
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Coherent X-ray diffraction in the Fraunhofer regime

Object of unknown structure ρ(~r)

Intensity, I (~q)

~Ks

~Kin

Scattering vector

~q = ~kin – ~ks

Phase are lost

I(~q) = |E(~q)|2

E(~q) = |E(~q)|eiφ(~q)

Radiography

Intensity

FT

Images, yes... but, Fourier transformed ones

E(~q) =

∫

ρ(~r)e–2πi~r·~qd~r

︸ ︷︷ ︸

Fourier Transform

= F{ρ(~r)}

Patterson Function: F{|E(~q)|2} = (ρ ⋆ ρ)(~r) =

∫

ρ(~r′ +~r)ρ(~r′)d~r′
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Phases are lost, but can be retrieved...

Oversampling of the intensities

Real Space Reciprocal Space

Shannon-Nyquist
sampling

Oversampling

pdet =
λz

a

pdet <
λz

2a

Sampling in the real space:

x →

[

–
Lx

2
: ∆x :

Lx

2
– ∆x

]

Sampling in the Fourier Space:

fx →

[

–
1

2∆x
:

1

Lx
:

1

2∆x
–

1

Lx

]

J. Goodman, Fourier Optics (book)
D. Sayre, Acta Cryst. 5, 843 (1952)
J. Miao, D. Sayre, H. Chapman, JOSA A 15, 1662 (1998)

fNyquist =
1

2∆x
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Iterative phase retrieval algorithm

Constraints:
- Finite Support
- Positivity

- a priori knowledge

Constraint:
|G (~q)|

|F (~q)| =
√

Iexp(~q)

We cycle iteratively between Real and Reciprocal space
through Fourier Transformations while imposing the

constraints of each space until convergence is reached.
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3D CDI using tomography or 3D Fourier transform

Tomo CDI 3D CDI
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Some examples in the literature

Page 21 | September 18, 2019 | J. C. da Silva - Summer School 2019



There are some difficulties

CDI poses some challenges for detector technology

very high dynamic range

small pixel size and very large active detection area

noise-free detectors

Isolated particles

specimens need to be isolated

limited to small specimens

tremendous oversampling of the intensities
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There are some difficulties

CDI poses some challenges for detector technology

very high dynamic range

small pixel size and very large active detection area

noise-free detectors

Isolated particles

specimens need to be isolated

limited to small specimens

tremendous oversampling of the intensities

Algorithm stagnation problems

slow convergence rate

twin-images

low-frequency information is hard to recover, but essential
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Ptychography

Hoppe, Acta Cryst A 25 (1969) 508; Hegerl and Hoppe, Ber Physik Chemie 74 (1970) 1148

German: Falte

Page 23 | September 18, 2019 | J. C. da Silva - Summer School 2019



Transverse diversity - Far-field X-ray Ptychography
exploiting the transverse diversity
Incident wavefront Sample Diffraction pattern

Aperture ≤ ξtx ξty
ψ(~r ; ~R) = O(~r)P(~r – ~R)

I(~q) = |F{ψ(~r ; ~R)}|
2

Reconstruction
algorithm

J. C. da Silva, A. Menzel, Opt. Express 23 (2015) 33812. / J.M. Rodenburg et al., Phys. Rev. Lett. 98 (2007) 034801

Scanned area Diffraction patterns

Rj–1

Rj

Rj+1
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X-ray ptychography - the reconstruction problem

Find the object O(r) and the complex-valued incident illumination
P(r) (the probe) consistent with the measured intensities:

I(~q; ~R) =

∣
∣
∣
∣

∫ ∞

–∞
O(~r)P(~r – ~R)e–i~q·~rd~r

∣
∣
∣
∣

2

Iterative phase retrieval

M. Dierolf et al., Europhysics New 39 (2008) 22.
P. Thibault et al., Ultramicroscopy 4 (2009), 338.
H.M.L. Faulkner, J.M. Rodenburg, Phys. Rev. Lett. 93 (2004), 023903
J. C. da Silva and A. Menzel, Opt. Express 23 (2015) 33812.

Fourier constraints
Each "view" satisfies its own

Fourier Constraint.
Overlap constraints

Overlapping regions agree and
the incident wave field is unique.

Redundancy
It allows to simultaneously

reconstruct the probe and the
object.
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Sampling requirements for Ptychography

ψ(~r ; ~R) = O(~r)P(~r – ~R) I (~q) = |F{ψ(~r ; ~R)}|2

Real-space Reciprocal-space

J. C. da Silva, A. Menzel, Opt. Express 23 (2015) 33812.

Let us define:
Rj = αDj

Qj = βqj

where: β =
1

O

Density of boxes:

2π

(αDj)(βqj)
≥ 1

Since Djqj = 2π:

1

αβ
> 1

Oversampling
condition
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Welcome to the third dimension

M. Dierolf et al. Nature 467 (2010) 436

J. C. da Silva et al. Langmuir 31 (2015) 3779

3D map of the refractive index Complex-valued refractive index
n(~r) = 1 – δ(~r) + iβ(~r)
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Chemical imaging of hydrated ordinary cement

Ca3SiO5
︸ ︷︷ ︸

Alite C3S

+ (1.3 + y)H2O
︸ ︷︷ ︸

water

→ 1.3Ca(OH)2
︸ ︷︷ ︸

Calcium hydroxide CH

+ (CaO)1.7(SiO2)(H2O)y
︸ ︷︷ ︸

Calcium-Silicate-Hydrated CSH

Absorption index β Refractive index decrement δ

(
µ

ρ

)

CSH

= ωCaO

(
µ

ρ

)

CaO

+ ωSiO2

(
µ

ρ

)

SiO2

+ ωH2O

(
µ

ρ

)

H2O

Materials ρ (g .cm–3) ρex. (g .cm–3)

Water 0.99 ± 0.01 1.00
CH 2.18 ± 0.01 2.211
C3S 3.10 ± 0.01 3.064

Capillary 2.19 ± 0.01 2.203
CSH(y=5.2±0.4) 1.83 ± 0.01 1.83 (y = 5)

J. C. da Silva et al., Langmuir 31 (2015) 3779.

Water content of CSH:
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Unexpected high density C-S-H at the border

J. C. da Silva et al., Langmuir 31, (2015), 3779.
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Unexpected high density C-S-H at the border

J. C. da Silva et al., Langmuir 31, (2015), 3779.
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How the phases are seated to each other

J. C. da Silva et al., Langmuir 31, (2015), 3779.
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Eco-friendly cement: the hydration of ye’elemite

Ca4Al6SO16
︸ ︷︷ ︸

ye’elemite

+ 2CaSO4.nH2O
︸ ︷︷ ︸

gypsum

+ (38 – 2n)H2O
︸ ︷︷ ︸

water

→Ca6Al2(OH)12(SO4)3.26H2O
︸ ︷︷ ︸

ettringite (AFt)

+ 4(CaO)0,04Al(OH)3.nH2O
︸ ︷︷ ︸

Al-hydroxyde (A-H gel)

Identify:

Bivariate histogram: Phase vs. Absorption

n(~r) = 1 – δ(~r) + iβ(~r)

δ(~r) β(~r)

δ
(~ r

)
[×

1
0
–
5
]

β(~r)[x 10–7]

A. Cuesta et al., J. Phys. Chem. C 121, 3044 (2017)

Characterize:
3D map of the electron density (e–/Å3)

Energie: 6.2 keV

Quantify:
Mass density and stoichiometry

Material ρ (g .cm–3) ρex(g .cm–3)

ye’elemite 2.58 2.60
gypsum 2.28 2.30

ettringite (AFt) 1.77 1.78
A-H gel (n=2.3) 1.48 N.A.
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Jupyter Notebooks

Jupyter Notebook
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Smallest ever high energy (33.6 keV) focal spot
Wave PropagationPhase Amplitude

Mode 1 Mode 2 Mode 3

11.6 nm × 12.6 nm
(H × V)

Deconvolution of XRF data
Original DeconvolvedFocal spot

J. C. da Silva et al., Optica 4(5), 492-495 (2017).
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Bragg coherent diffraction imaging (Bragg CDI)

M. A. Pfeifer, et al., Nature 442, 63 (2006)

P. Godard, et al., Nature Communications 2, 568 (2011)

S. O. Hruszkewycz, et al., Nature Materials 16, 244-251 (2017)
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Different X-ray imaging regimes
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In-line Holography

P. Cloetens et al., Appl. Phys. Lett. 75, (1999), 2912.
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Near-field ptychography

M. Stockmar et al., Sci. Rep. 3, 1927 (2013)
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Welcome to the third dimension
Phase Amplitude Probe

Ptychographic X-ray Computed Tomography (PXCT)

M. Stockmar et al. Opt. Express 23, 12720 (2015)

Complex-valued refractive index
n(~r) = 1 – δ(~r) + iβ(~r)
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The different structures of a SOFC

SOFC: Solid Oxide Fuel Cell

Cathode current collector (b)

Cathode functional layer (c)

Electrolyte (d)

Anode substrate (e)

10 µm 10 µm

M. Stockmar et al., Opt. Express 23(10), 12720 (2015)
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ESRF - Extremely Brilliant Source (EBS)

Current source
New source
(Expected)
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More brilliance and transverse coherence

Brilliance = (const.) ×
F

SΩ
Emittance = SΩ
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Conclusions and remarks

Coherent X-ray imaging (CDI)
➔ High resolution, small samples, isolated specimens, works

with perfect plane waves.

Far-field ptychography (FFP)
➔ High resolution, high penetration, combination with

spectroscopy, tomography, works with plane waves or
structured wavefield.

In-line holography
➔ Large field-of-view, high resolution, high penetration,

tomography, faster than NFP, works with perfect plane waves.

Near-field ptychography (NFP)
➔ Large field-of-view, relatively high resolution, high

penetration, tomography, faster than FFP, works with
structured wavefields.
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Thank you for your attention!

Contact info:

jdasilva@esrf.fr

sites.google.com/view/

jcesardasilva

Coherence group:

coherence-subscribe@esrf.fr

Flash me for
more info ▼

QR code
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