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Machine Learning
Creating empirical models that capture the typical behaviour of complex data in some
limited domain

• essentially flexible data modelling + statistical parameter estimation

Artificial Intelligence
Engineering artificial systems that have near-human-level problem solving capabilities in
some limited domain

• essentially a systems integration problem not a data modelling one
• typically uses ML + other techniques as components

This talk
• Only discusses Machine Learning, not Artificial Intelligence
• Only covers a few topics within the huge field of ML

I hopefully ones relevant to neutron / X-ray scattering applications. . .
• Emphasizes basic principles and intuition, not technical details.
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Common ML Tasks 1 – Predictive Modelling
• Given input samples, predict corresponding output values.
• Goes with supervised learning: training samples come annotated with desired

output(s). Training minimizes a “loss” function on the samples.

Examples
• Discrimination / classification: outputs are categorical, e.g. “class” of input sample.
• Regression: outputs are continuous, e.g. predicting intensity or response strength.
• Pattern detection / segmentation: outputs include locations / geometry

I e.g. find / localize / segment occurrences of given object(s) / pattern(s) in images by scanning
“is there pattern here?” classifier over image and postprocessing its outputs

• Metric learning: given pairs of input samples, return continuous measure of “distance”
or “dissimilarity” between them.

• Comparison / ranking: given several input samples, output relative
ordering / preference scores for them.
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Common ML Tasks 2 – Descriptive Modelling
• Learning to empirically characterize input samples in some feature space, not predict

specific outputs for them.
• Goes with unsupervised learning – training samples are not annotated.
• Useful for:

I producing intermediate “feature representations” for later tasks
I data visualization, guidance for improved modelling, . . .
I data cleaning / anomaly detection

Examples
• Clustering: finds proximity-based groupings of samples in feature space (e.g.

k-means)
• Dimensionality reduction: finds low-dimensional embeddings that characterize the

samples and/or display their range of variation in feature space.
• Distribution / support learning: finds empirical probability distributions for the

samples, or geometric models for the regions that they occupy in feature space.
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Common ML Tasks 3 – Modelling Behaviours
Reinforcement Learning learns behavioural strategies for agents (robots, game players,
. . . ) searching for rewards / avoiding penalties in evolving environments
• The agent takes “actions” that produce (stochastic) state evolutions actiont → statet+1

• It tries to minimize its regret (expected total future loss) E[
∑∞

t′=t losst′ ], by learning:
I an action policy – a direct mapping (statet , inputst , t)→ actiont
I -or- a valuation function estimating the expected future regret contribution for each possible

state at some horizon t+k . This is used to explicitly search for the best action at time t .
I -or- both: a policy to guide the search from t to t+k and a valuation function to estimate the

regret from t+k onwards.

Examples
• Recommender systems & targeted advertising – a $100 billion industry
• Game-playing agents – e.g. the AlphaGo program used deep neural net policy &

valuation functions to defeat the world’s best Go players
• Robotics, planning systems, . . .
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Common ML Tasks 4 – Modelling Competition
The above tasks traditionally assume passive, time-invariant environments:
• the statistical properties of samples and outputs remain constant over time
• nothing in the environment is actively trying to select samples / actions / strategies that

will defeat the method’s best efforts.

Adversarial Learning provides strategies for handling “combative” environments that
actively try to defeat the method
• Central to areas like game playing, but useful elsewhere

I results are more robust to unmodelled effects, but less ‘fine tuned’ to any given distribution
• Training is much harder because training distributions are not fixed

I The solution is a saddle point (Nash equilibrium) of a two-agent objective function not a local
minimum of a single-agent one. Finding saddle points is delicate.

Examples
• The AlphaZero Go program used adversarial training to defeat AlphaGo.
• Adversarial deep nets are good at learning to generate realistic images or signals.
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Common ML Tasks 5 – Reducing / Re-using Supervision
Annotating large training sets is time-consuming! – Can we do more with less?

• Semi-supervised learning: learning an output predictor when only some of the
training samples have “desired output” annotations

I the unannotated samples help to characterize the underlying distribution in feature space
• Weakly supervised learning: learning a full output predictor from training samples

with incomplete annotations
I e.g. learn to locate dogs in images from training images annotated with tags like “dog” but

not with their image locations
I missing annotation information corresponds to latent variables in statistics.

• Transfer learning: adjusting an existing model to cope with new output classes/tasks
or changed feature space distributions

I the existing model (trained on many samples) provides regularity so comparatively few new
training samples are needed

• Multi-task learning: learning a joint representation for several different tasks
I e.g. a common “feature space” + distinct “output layers”
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Bias-Variance Trade-Off – The Central Dilemma of ML
The more flexible a model is, the better it can fit the training data but the more it will
overfit to noise in the data

• Overly rigid models have high bias, giving systematically poor predictions
• Overly flexible models have high variance / unstable parameter estimates

I overfitting to training set produces low training residuals but poor performance on test set
I usually controlled by explicit weight regularization or by adding noise to the fitting process
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Basic Discriminants – Logistic Regression and SVM
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• Input samples are mapped into a high-dimensional feature space by some
user-specified feature mapping

• A score vector s is found by linear projection: s = weights · features + bias
I the weights are the scorer’s learnable parameters

• The scores are translated into output values
I Logistic regression outputs class probabilities: p(class c) = softmaxc(s) ≡

exp(sc)∑
c exp(sc)

I SVM outputs class ID’s: class = argmax(s)
I Logistic regression provides calibrated output probabilities for overlapping classes but does

not naturally handle non-overlapping classes
I SVM handles both overlapping and non-overlapping classes, but doesn’t give probabilities
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Logistic Regression and SVM Loss Functions
The corresponding loss functions for weight learning are
• logistic regression: lossc = lmax(s)− sc where lmax(s) = log

(∑
c exp(sc)

)
• SVM: lossc = max(s1, . . . , sc−1, . . . , sn)− (sc−1) where “1” is the SVM margin
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Both methods are often used as output layers, e.g. for deep neural nets
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Feature Mappings
Many kinds of feature mappings are available to convert diverse forms of learning inputs to
vectors of real features
• text, images, etc., but also graphs, molecular structures, . . .

Simple examples are
• one hot encodings (0, ...,0,1,0, ...,0) for categorical variables
• bag of word (vocabulary histogram) encodings for text

Kernels
• Kernels are functions k(x1,x2) giving a notional “inner product” or “similarity score”

between pairs of samples
• They are widely used in ML and stock kernels exist for many kinds of inputs
• Given fixed reference samples x1, ...,xn (e.g. the training set), input samples x can be

represented as vectors using the feature mapping x→ (k(x1,x), ..., k(xn,x))

Reproducing Kernel Hilbert Spaces are function spaces built over kernels
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Ensemble Methods 1 – Mixture of Experts

Ensemble Methods
• These combine a set of weak prediction models to produce a stronger one

I this often works surprisingly well, even if the individual models are hopelessly weak
• Conditions:

I the weak models must be complementary (the space of possibilities is covered)
I they must be diverse (having different weaknesses, not similar ones)
I the combination method / averaging weights must be well chosen

Mixture of Experts
• MoE methods learn spatial weightings / an output-combining layer for a predefined set

of predictors
• Even very strong methods like Deep Nets often benefit – e.g. combining focused DN

“domain experts” with shallow but diverse “breadth coverage” ones
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Ensemble Methods 2 – Random Forests and Boosting
Boosting
Greedy sequential selection of new weak model(s) to include to improve the ensemble
• works over a space of weak models, often by randomly sampling new ones to try
• Gradient boosting chooses new models to approximate gradient descent w.r.t.

ensemble performance

Boosted Regression Forest
Regression Tree: send multi-variable input samples through a short hierarchy (tree) of
single-variable splits, output a real value attached to the leaf node reached
Regression Forest: apply a set of regression trees to input sample, sum outputs
Boosted Regression Forest: choose trees and weights by boosting
• A good approach for predictors over messy tabular / data-mined data: samples with

many discrete (or binnable real) attributes, frequent missing/erroneous values, . . .
• Usually not competitive for predictors over regular signals or images
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Bayesian Methods

Bayesian methods represent all phases of reasoning in terms of probabilities
• the training data T, model choices/parameters w and outputs y are all characterized in

terms of assumed probability distributions – typically highly structured ones
• learning = using Bayes’ rule to evaluate the posterior distribution over models w

p (w|T,model prior) =
p (T|w) p (w|model prior)

p (T|model prior)

• prediction = using the model posterior to evaluate the posterior distribution over y

p (y|T,model prior) =

∫
w

p (y|w) p (w|T,model prior) dw

– to use this we can average over y values or find the mean/mode/variance of their
posterior
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Bayesian Inference
Bayesian computations can seldom be completed in closed form, so approximate inference
methods are needed

Monte-Carlo Methods
• Inference by generating and averaging over random samples

I gold-standard results, but often slow
• Various flavours

I complex models typically use Markov Chain MC
I simple MC and quasi-random methods tend to get forgotten but they are often more efficient
I for MCMC on easily-differentiable distributions, Hamiltonian MCMC is popular

Variational Inference
• Approximates complex joint distributions with factored analytic marginals
• Simple and fast, but typically under-estimates effects of variable coupling

I variational approximation ‘sits under the peak’ of the true joint distribution
I Expectation Propagation is a variant that ‘sits over the peak’ and thus tends to

over-estimate the effects of coupling
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Example 1 – Bayesian Ensemble for SAXS Protein Mass

This paper1 merged four simple protein-mass
estimators in a Bayesian ensemble
• the estimators are based on integrals of

SAXS profiles
• for each one, the probability distribution

p(estimated mass | true mass) is obtained
empirically from simulated profiles of
known proteins
• the ensemble outperforms each estimator

and provides calibrated uncertainty
estimates

1Consensus Bayesian assessment of protein molecular mass from solution X-ray scattering data N. Hajizadeh et al. Nature
Scientific Reports 8, 2018
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Example 2 – Bayesian Fitting of Inelastic XS Models
Bayesian fitting method2 for Inelastic X-ray
Scattering from gold nanoparticles in water
• models # active longitudinal-transverse

modes vs. momentum transfer Q
• reversible jump MCMC inference
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2Interpreting the Terahertz Spectrum of Complex Materials: The Unique Contribution of the Bayesian Analysis. A. De
Francesco et al. Materials 12, 2019
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Gaussian Processes / Kriging
Gaussian Processes (GP’s) are simply Gaussian distributions defined over
infinite-dimensional function spaces
• Gaussians are defined by their mean and pairwise covariances, so a scalar GP over

variables x is defined by its mean function µ(x) = E [ f (x) | f ∼GP ] and its kernel
(covariance function) k(x,x′) = Cov[ f (x), f (x′) | f ∼GP ]

I the kernel encodes our assumptions about how function values correlate across space
• Reasoning about functions sampled from GP’s can always be reduced to

finite-dimensional Gaussian calculations
• E.g. if a GP has mean zero and we observe f ∼GP at points x1, . . . ,xk , its expected

value at a new point x is

E [ f (x) | f ∼GP ] = ( k(x,x1) ... k(x,xk ) )

(
k(x1,x1) ... k(x1,xk )

... ... ...
k(xk ,xk ) ... k(x1,xk )

)−1(
f (x1)

...
f (xk )

)
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Bayesian / Gaussian Process Optimization
These properties make GP’s an excellent choice for extrapolating the values of unknown
functions from observations taken at a few locations.

Bayesian Optimization uses this to provide efficient methods for optimizing very
expensive functions sample-by-sample
• A GP model is assumed: this encodes our critical prior assumptions about the

underlying function’s behaviour
• Function values are observed one-by-one:

I after each sample, the GP model is updated
I numerical optimization is run on the updated model to find the location x that maximizes
{expected improvement in best-known function value} from a sample at that point

I the underlying function is sampled at this point

This is useful for economizing observations when each new one requires (e.g.) an
expensive physical simulation or a real experimental run
• its main limitation is the inevitable mis-match between the assumed GP kernel and the

(unknown) correlation behaviour of the underlying function.
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Example – Kriging-based Automatic Sampling for SAXS

This paper3 used a variant of GP Optimization to
automatically choose sampling positions for
SAXS samples
• the new sample is placed at the point with the

greatest GP uncertainty
• see Jamie Sethian’s talk later today

3A Kriging-Based Approach to Autonomous Experimentation with Applications to X-Ray Scattering. M. Noack et al. Nature
Scientific Reports 9, 2019
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Neural Network Methods

• The model is built recursively from heuristic nonlinear layers
I think of this as deeply-nested feature extraction + output layer(s) for given task(s)
I each layer is composed of linear projections + scalar nonlinearities (“activation functions”)
I the linearities can be simple combinations, convolutions, . . .
I the model is parametrized by the weights of the linear projections

• This gives a powerful representation that makes few assumptions, but it is even more
heuristic than other ML methods

I especially effective for continuous signals, images
I also good for complex structured inputs like text, ranking, . . .
I less good for discrete “data mining” problems

• Neural nets have huge numbers of parameters & highly non-convex learning problems
I training requires a lot of training data and careful regularization
I usually trained by variants of Stochastic Gradient Descent (SGD)
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1990’s Neural Nets – LeNet-5 Convolutional Net

LeNet-5 Architecture4

• 32×32 window scans cheques, reading handwritten digits one-by-one
• Arguably the first successful neural network product
• The network is tiny by todays standards!

4Handwritten digit recognition with a back-propagation network. Y. LeCun et al. NIPS 1989,
Gradient-based learning applied to document recognition. Y. LeCun et al. Proc. IEEE 1998
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1990’s Neural Nets

• Each node is linear projection + sigmoid nonlinearity with learnable weights and bias

node output = activation function
(∑

weights · node inputs + bias
)

• Nodes may be densely connected or convolutional
• Output layer is logistic (“softmax”) classifier
• Usually limited to ∼4-6 layers if fully connected, 8-10 if convolutional
• Seldom more than 104-105 training samples
• Training is by SGD with momentum over backprop’ed scalar classification loss
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1990’s Activation Functions
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• Responses are linear at small |u| but saturate
for large |u|

• The curves have the same basic shape but
logistic sigmoid(u) ≡ 1/(1 + e−u) is positive
whereas tanh is vertically centred

• In practice tanh learns more quickly
I owing to positivity, each weight update for

logistic sigmoid requires a substantial
compensatory bias adjustment

I i.e. its Hessian is less well conditioned
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Vanishing Gradient Problem
• Individual sigmoids saturate easily giving very small gradient contributions
• Saturated units learn slowly owing to their small gradients
• The problem compounds backwards over the layers

I the gradient contribution of a path is small if any sigmoid along it saturates
I early layers get tiny gradients through many competing paths
I this confuses the feedback signal and gives very slow learning

• The problem gets worse as training progresses
I gradients never vanish, pushing weights and saturation to ever-more-extreme values
I inter-path cancellations increase during training

• The problem gets worse for small training sets, impoverished outputs (e.g. single class
labels) and under-regularized models – all of these make it easier to overfit

• The problem gets much worse with suboptimal weight initializations
I all units in all layers need to be initialized in their ‘sweet spots’ – non-saturated yet still

significantly nonlinear

These issues limited the depth of network that could be trained for 20 years!
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Making Deep Neural Nets Work

Deep Neural Networks took many years to develop because all of the following elements
are critical for success
• Very large training sets (and the computational power and memory to use them)
• Well-chosen activation functions / “neuron” nonlinearities
• “Unit cells” that are carefully structured blocks of layers, not individual nodes

I block normalization, skip connections, factored convolution, . . .
I specialist custom layers – rendering, spatial transforms, optimization, . . .

• Rich ‘multi-loss’ feedback signals for training
• Carefully chosen weight initializations
• Richer regularization techniques
• More efficient optimization algorithms
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Modern Activation Functions
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• “Rectified Linear Unit” ReLU(u) = max(u,0)
I Simple and fast, good for all non-output layers
I Non-negative – bias-sensitivity may slow learning
I Scale invariant so needs layerwise data

normalization to prevent blow-up
• “Dead ReLU” problem

I Gradient vanishes for u < 0, so nodes that
become negative on all samples during training
often remain dead from then on

I Fixes: Leaky / Shifted ReLU add linear tilt /
constant offset at u < 0

I Exponential LU (ELU) adds decaying exponential
at u < 0

Output layer (for classifiers) is still sigmoidal, giving logistic maximum (“cross-entropy”) loss
contributions – this activation function looks like a smoothed ReLU
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Evolution of Block-based Architectures

LeNet-5 AlexNet VGG Net ResNet Inception V1

Inception block

The “unit cells” of traditional neural nets are simple feed-forward nodes.
Modern deep nets use carefully structured compound blocks.

Images from: Dive into Deep Learning, Zhang et al., 2019
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Normalization Layers 1 – (Mini-)Batch Normalization
• Sigmoid nonlinearities are sensitive to scales and offsets of their input activations
• ReLU is scale-invariant (nothing controls activation scales!) but offset-sensitive
• Both are sensitive to differing scales of different inputs

Batch Normalization5 is scalar affine normalization of a node’s activation ai across a
single mini-batch, designed to keep the activations balanced during learning
• For node i , ai → γi

ai−µi
σi+ε

+ βi where µi = meanMiniBatch(ai) and σi = stddevMiniBatch(ai)

I for convolutional nets, pool µi , σi across image but not across convolution filters
I γi , βi are learnable scaling parameters

• Usually applied immediately before each nonlinear unit
• Each mini-batch produces different (“inconsistent”) normalizations

I this “normalization noise” seems to help learning a lot! – it is controversial why . . .
I moderately-sized mini-batches are usually best – say O(102) samples

• After training, use whole training set to find final µi , σi values
5Batch normalization: accelerating deep network training by reducing internal covariate shift. Ioffe & Szegedy, arXiv:1502.03167
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Normalization Layers 2 – Layer Normalization

Layer Normalization6 is similar to Batch Normalization except that it pools the
normalization signals
• over all neurons of a layer for a single training sample
• not over all samples in a mini-batch for a single neuron

It is especially useful for Recurrent Neural Nets, but also works well with CNN’s.

6Layer Normalization. J.L. Ba et al. arxiv:1607.06450, 2016
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Skip Connections and Residual Networks 1
In practical applications one often has mappings that can be represented well as a linear
core with nonlinear corrections:
• the nonlinearities of conventional neural nets make it hard to learn the linear parts!

Residual Blocks
These convert standard neural net block(s) to nonlinear correctors by adding direct skip
connections from their inputs to their outputs
• the skip connections provide clean paths for backprop signals, allowing very deep

networks (100’s of layers) to be trained

Residual Networks (ResNets)7

These are deep nets built from residual blocks
• useful especially when the input and output represent similar things, e.g.

image-to-image tasks

7Deep residual learning for image recognition. He et al. CVPR 2016
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Skip Connections and Residual Networks 2

Simple NN block Residual block Basic ResNet block ResNet with 1×1 conv.

Image from: Dive into Deep Learning. Zhang, Lipton, Li, Smola, 2019.
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Optimization Methods for Deep Nets 1
Deep Nets are usually trained by variants of Stochastic Gradient Descent (SGD)
• stochastic = optimizer sees samples individually in random order, not all together
• mini-batch = small set of samples presented together, usually chosen to fit GPU cache
• back-propagation = gradients are found by running the chain rule backwards through

the net

Momentum Based Methods
SGD with Momentum (SGDM): the most basic approach – the parameter updates are
proportional to a simple moving average of the current and past gradients
• the averaging reduces the influence of sampling noise and (weakly) compensates for

the poor conditioning of typical loss Hessians

Nesterov Accelerated Gradient (NAG): a predictor-corrector variant of SGDM
• step along momentum, evaluate gradient, step along gradient

I there are two network evaluations per update
• excellent theoretical properties & very robust, even for non-smooth objective functions
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Optimization Methods for Deep Nets 2
Adaptive Gradient Methods
in addition to moving averages of gradient values, these use moving averages of gradient
variances to provide componentwise rescalings of the step directions

– each variable gets its own adaptive learing rate, reducing the effects of poor scaling
– especially useful for applications with large numbers of rarely-active features

I text, recommender systems . . .
• ADAGrad uses a simple cumulative sum for the squared gradients
• RMSProp uses a moving average for the squared gradients
• ADADelta includes an additional moving average to set the learning rates
• ADAM corrects for a start-of-run estimation bias in RMSProp

I it is currently the most popular approach for training deep nets

Warning: Adaptive Gradient methods are popular mainly owing to rapid convergence.
Their aggressive variable rescaling often leads to worse solutions than SGDM or NAG8.

8The Marginal Value of Adaptive Gradient Methods in Machine Learning. A. Wilson et al. arxiv:1705.08292, 2018
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Weight Initialization

Network weights are usually initialized randomly with scalings chosen such that input
activations of O(1) will produce output activations of O(1)

Some Common Heuristics
• Initialize bias terms to zero
• Sample the weights from a Gaussian9 with mean 0 and std.dev.

√
k

# inputs per node
I typically k ∼ 2 for ReLU, k ∼ 1 for sigmoid units

• For softmax output stages with many outputs, use std.dev.
√

1
(# inputs per node)+(# outputs)

• For ResNets, initialize output weights of each residual leg to small values
I or use ‘Fixup’ normalization10

9Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. K. He et al. arXiv:1502.01852
10Fixup Initialization: Residual Learning without Normalization. H. Zhang et al. ICLR 2019.
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Regularization for Deep Nets
Regularizing a network during training improves its test-set performance by reducing
overfitting, and also helps training to converge. Adding noise has the same effect.
• Weight Decay: classical Tikhonov regularization of the weights

I a quadratic penalty λ
2 ‖w‖

2 gives “weight decaying” update contributions δw ∝ −λw
I other penalties can be used, e.g., L1 penalties ‖w‖1 lead to sparse weight vectors

• Stochastic Gradient Optimization: this itself is a noisy process with strong
regularizing effects

• Jittering: apply small random perturbations to the training samples
I e.g. for images, small translations & rotations, color changes, pixel noise, local damage . . .

• Drop-Out: perturb layers of the network by randomly suppressing some fraction p of
their node activations

I to correct for bias, rescale the remaining activations by 1
1−p

I used mainly for densely connected layers not convolutional ones
• Drop-Connect: generalize Drop-Out by randomly suppressing some fraction of the

activation ∗ weight products, not the activations themselves
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Convolutional Deep Nets 1 – Overall Architecture
Convolutional nets are useful for applications based on complex continuous signals that
are dominated by local interactions – audio, images, volumetric measurements, . . .

• They usually have several stages, each built from a series of convolutional layers
followed by a single pooling / dimension reduction layer

I normalization layers, residual connections, etc., may also be included
I the number of feature channels is usually increased as the map dimensions diminish

• The final convolutional feature layer can drive
I a convolutional output layer, e.g. for image segmentation / object detection
I a densely connected layer or an image-wide pooling one, e.g. for image classification

VGG image
classification
network
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Convolutional Deep Nets 2 – Convolutional Layers
Convolutional layers run centred, finite-sized convolution filters (cross-correlation masks)
with learned coefficients across their input feature maps
• Parameter sharing: the layer parameters (filter weights) apply to all output positions
• Locality: the output-map values depend only on nearby input-map values
• Translation & size invariance: of the input-map to output-map transformation

Besides their spatial dimensions, the i/o maps typically have multiple feature channels
• output channels usually take inputs from every input one, so for m×n rectangular filters

mapping p input channels to q output ones, we need to sum over m×n×p input values
for each of q output channels

• this computation costs m.n.p.q flops per output position
I for deep nets over volumetric images, convolutional layers cost even more

• the inputs, outputs and weights form multi-dimensional arrays
I the “tensors” of software like TensorFlow

• the input maps need to be padded (extended at their borders by the mask half-width),
otherwise each layer reduces the map dimension
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Convolutional Deep Nets 3 – Dimension-Reducing Layers

Pooling Layers
These merge 2×2 (or whatever) local blocks of activations to reduce the map dimension
• Max pooling takes the maximum input activation from the given pooling region
• Average pooling takes the average instead (this is usually less effective)
• Stochastic pooling copies a random input from the pooling region – a form of

Drop-Out adapted to pooling

Strided Convolution
This reduces the output map dimension by applying (dense) convolutional filters only at
even input positions (or at each k -th one)
• e.g. this is often used to smoothly subsample feature maps
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Example 1 – CNN-based Super-resolution for SANS

This paper11 trained a short CNN to
up-sample (increase the resolution)
of Small Angle Neutron Scattering
images – EQ-SANS at SNS
• the results were significantly

more accurate than bicubic
image interpolation

11Accelerating Neutron Scattering Data Collection and Experiments Using AI Deep Super-Resolution Learning. Ming-Ching
Chan et al. arxiv:1904.08450, 2019
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Example 2 – CNN-based Content Tagging for SAXS Images
This paper12 used an SVM over CNN image features to tag Small Angle X-Ray Scattering
images with their content types (Rings, Halo, . . . )
• AlexNet on image + CNN on elastic-net-aligned Fourier-Bessel coefficients
• trained on synthetic images, converted to real ones with transfer learning

12Automatic X-ray Scattering Image Annotation via Double-View Fourier-Bessel Convolutional Networks. Ziqiao Guan et al.
BMVC 2018
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Speeding Up Convolution 1

Convolution is conceptually simple but computationally expensive, with many parameters

In practice both the cost and the number of parameters can often be reduced with little loss
of accuracy:
• Deepening: replace convolution layers that require large filters with several layers

using smaller ones
• Dilated convolution: use sparse convolution filters that only access, e.g., even offsets

I can also ‘cut off the corners’ of the convolution mask, e.g. octahedral masks
• Depthwise separation: replace single ‘fat’ convolutions with networks of ‘thinner’

(lower dimensional) ones
I e.g. replace a m×n×p → q convolution block with separate m×n convolutions over each of

the p input maps followed by 1×1 ‘convolutions’ (p-D to q-D linear projections) to get the q
output maps

Inception modules exploit these ideas.
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Speeding Up Convolution 2 – Inception Modules

Inception V1–V4 is a series of module designs from Google for speeding up convolution.

The basic ‘A’, ‘B’ and ‘C’ modules from Inception-V413

Inception-V4 also defines modules for spatial pooling and ResNet / skip-connection stages.

13Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, C. Szegedy et al., arxiv:1602.07261
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U-Net and Multiscale CNN

U-Net14

A CNN architecture for multi-scale image analysis & resynthesis
• down-going leg of ‘U’ recursively extracts feature images at multiple scales
• up-going leg of ‘U’ recursively recombines each level’s feature image (via direct skip

connections) with information from coarser levels
• output is simple or multiscale image

Popular for image segmentation / labeling, image-to-image synthesis, . . .

Multiscale CNN15

A U-Net, trained with multi-scale loss contributions instead of single scale ones
• applied to multiscale inverse problems: phase recovery, denoising
• see Christoph Koch’s talk tomorrow . . .

14U-Net: Convolutional Networks for Biomedical Image Segmentation, O. Ronneberger et al., MICCAI 2015
15Multi-scale Convolutional Neural Networks for Inverse Problems, Feng Wang et al., arXiv:1810.12183
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U-Net and Multiscale CNN – 2

Image from: Multi-scale Convolutional Neural Networks for Inverse Problems, Feng Wang et al., arXiv:1810.12183
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Spatial Transformer Layer
Image-based networks often need to spatially transform parts of their feature maps
• e.g. to register them to a content-classifying output network

Spatial Transformers16 are custom deep net layers designed for this
• a transform estimation sub-network takes the input feature map and returns the

corresponding transform parameters
• a conventional image resampler applies the transform to the input map

16Spatial Transformer Networks. M. Jaderberg et al. arxiv:1506.02025, 2016
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Generative Deep Nets – Auto-Encoder

encoded
input

input signal

output signal

encoder
network

decoder
network

output is
trained to
reproduce

input

-

Auto-Encoder = encoder-decoder pair, trained to
reproduce its input
• lossy encoding maps high-dimensional input to a

lower-dimensional latent space
• decoder tries to reconstruct input from encoding
• both encoder and decoder are typically deep

neural networks
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Variational Auto-Encoder (VAE)

Standard auto-encoders are trained only to reproduce their inputs
• their latent encodings are seldom very coherent owing to overfitting
• to get smoother, more useable encodings we need to regularize

Variational Auto-Encoders17 are one popular way of doing this
• during training, Gaussian noise is added to the encoded inputs before reconstruction

I this regularizes the model: it learns to map nearby codes to nearby outputs to limit the
impact of the noise

• a loss penalty controls the relative scaling of the noise and the incoming codes
I traditionally Kullback-Leibler divergence is used – this is motivated in terms of Approximate

Variational Bayes inference in a quasi-Gaussian model

VAE’s turn out to be an excellent way to synthesize complex signals and images
• synthetic outputs are generated by feeding pure Gaussian noise into the decoder

17Auto-Encoding Variational Bayes. D. Kingma, M. Welling. arxiv:1312.6114, 2014
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Variational Auto-Encoder 2

input signal x

output reconstruction x'

encoder
network /
μ(x), σ(x)
predictor

decoder
network /

generative
model

μ(x), σ(x)

z = μ+σ.ν
random
noise

ν ~ N(0,1)

loss = 
KLD( N(μ(x),σ(x)) || N(0,1) ) 

- log p( x | x'(z) )
= regularizer 

+ reconstruction error
distribution
parameters

Some generated face and digit images,
illustrating that VAE encodings vary smoothly
across their latent spaces.

Images from: Auto-Encoding Variational Bayes. D. Kingma, M. Welling. arxiv:1312.6114, 2014
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Generative Adversarial Networks (GANs)

synthetic
examples

discriminant
network

generative
network

"decodes"
noise
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real 
training
samples

Generative Adversarial Networks are another good way to
synthesize realistic signals and images
• an example-generating network is fed with random noise
• a discriminator network is trained to distinguish between

synthetic and real examples
• training is adversarial – generator & discriminator compete

I delicate to train – optimal solution is a saddle point

Images from: Generative Adversarial Nets. I. Goodfellow et al. NIPS 2014
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Recurrent Neural Networks (RNNs)
Recurrent Neural Networks are useful for modelling variable-length sequences with
unpredictable long-term dependencies
• e.g. text, speech, action sequences, DNA / protein backbones,. . .
• the model has internal state, propagated from one time-step to the next
• training unwraps the net, applying it forwards through sequence, then back-propagating

backwards through the chain
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Gated / Long-Term Recurrent Networks

The state vectors of simple RNN’s tend
to increase or decrease exponentially
over time
• numerical blow-up and/or quick

forgetting of state information
• careful initialization sometimes

helps to counter this18

Practical RNN’s typically include active
gating to choose what to remember
• usually GRU or LSTM
• most people use GRU these days

as it is simpler and good enough

control

linear
mixing

scaling tanh

input xt

internal
state ht

internal
state ht+1

output yt

Gated Recurrent Unit (GRU)

control

scaling

tanh

input xt

internal
state ht

internal
state ht+1

output yt

scaling

tanh

sigmoid

+

x

memory
m t memory

mt+1

Long Short-Term Memory Unit (LSTM)

18A Simple Way to Initialize Recurrent Networks of Rectified Linear Units. Q.V. Le et al. arxiv:1504.00941, 2015
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Attention Based Networks / Transformers
Attention based networks /
Transformers19 are displacing RNN’s in
many sequence-to-sequence applications
• they are auto-regressive like RNN’s but

without any memory or hidden state
• at each time-step the network sees all of

its previous (in the sequence) inputs and
outputs

I the inputs (with positional encodings) are
mapped into a common embedding space
and summed, and similarly for the outputs

• a “neural attention” mechanism then
selects relevant features to propagate

I weighted pooling of values gated by
dot-product units

input xt

t

previous &
current inputs

previous
outputs

ENCODER

DECODER

ATTENTION UNIT

19Attention Is All You Need. A. Vaswani et al. arxiv:1706.03762
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Example 1 – VAE/RNN Representation for Molecule Design
This paper20 produced a Variational Auto-Encoder
based latent space for molecule design
• molecules are represented as SMILE strings

I e.g. C1=CC=CC=C1
• the VAE encoder is a GRU RNN or a CNN

I a GAN is also possible
• the VAE decoder is a GRU RNN with random

sampling from output-letter distribution
• the latent space dimension is 150-200
• multilayer perceptrons on the latent space are

trained to predict molecular properties
• optimization uses Gaussian Process regression

over the properties for smoothing

general approach

molecular property optimization
20Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. R. Gomez-Bombarelli et al., ACS

Cent. Sci. 4, 2018
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Example 2 – AlphaFold De Novo Protein Shape Prediction

Deep Net21 approach to predicting protein folding
• single domain, backbone not side chains,

residue-level not atom-level
• evolutionary co-variation of residues gives hints

regarding spatial proximity
• deep net predicts pairwise distance maps

between residues using co-variation features
and backbone sequence

• second net predicts protein-specific folding
potential from distance maps and torsion angle
priors

• gradient descent or simulated annealing adjusts
torsion angles to optimize protein shape

21Unpublished. See https://deepmind.com/blog/article/alphafold and AlphaFold at CASP13, M. AlQuraishi, Bioinformatics, 2019
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There are Many Other Kinds of Neural Nets . . .

From: F. van Veen & S. Leijnen, www.asimovinstitute.org/neural-network-zoo
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Deep Net Software 1

TensorFlow
Google’s main library for large-scale dataflow programming, not just deep learning
• many users but reputation for being hard to use (especially for beginners / debugging)
• efficient for huge industrial problems, resource hungry for small ones
• TensorFlow-2.0 just released – said to be much easier to use
• Keras is a simplified python front end for TensorFlow, popular with beginners

PyTorch
Facebook’s python reboot of Torch ML+DL library
• recent but very popular, especially in academia
• simpler to use than TensorFlow but still powerful
• FastAI is a simplified interface
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Deep Net Software 2

MXNet
Apache open-source Deep Net framework, used by Amazon & others
• efficient & scalable industrial solution, fewer users than TF but popular with them
• MXNet Gluon is a simplified interface, or use Keras over MXNet
• integrates well with other Apache infrastructure: Spark / MLlib, Singha, Mahout

Others
• CUDA – low-level NVIDIA drivers for numerics, DL, etc. on GPUs, used by everyone
• Theano, Caffe, Torch. . . – older DL libraries, now largely obsolete
• CNTK / Microsoft Cognitive Toolkit – Microsoft DL library, few users
• Chainer – deep learning in python, mainly used in Japan
• DL4J – deep learning in Java, few users
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Deep Learning Resources
Books
• “Deep Learning”, I. Goodfellow, Y. Bengio, A. Courville, 2016

I the standard academic DL text, but it already looks dated (www.deeplearningbook.org)
• “Deep Learning with Python”, F. Chollet, 2018

I a simple hands-on introduction for ML engineers, using Keras
• “Dive into Deep Learning”, A. Zhang, Z. Lipton, M. Li, A. Smola, 2019

I an interactive web textbook (d2l.ai) using MXNet + Jupyter
I still evolving so coverage is somewhat patchy, but useful for basic models

• there are many others, of variable quality

Other Resources
• Kaggle.com – popular ML challenge site, useful for seeing what works and/or finding

people to solve your problem for you
• many good blogs and on-line courses – course.fast.ai, deeplearning.ai, edx.org, . . .
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Other ML Software

SciKit-Learn
Popular Python / SciPy / NumPy library for general ML

Other ML Systems
• Torch: older but broader variant of PyTorch, in Lua but good interface to other

languages
• Shogun: C++ ML library, mainly kernel methods for large-scale problems
• LibSVM: popular low-level C library for SVM
• XGBoost: low-level C++ library for gradient boosting
• R: popular system for statistical analysis, contains some basic ML but not very scalable
• Weka: popular but dated system for data mining, some ML
• Julia: a recent language for scientific computing – highly recommended but still a

work-in-progress
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