

On-the-fly machine learning for tomography

Allard Hendriksen, Daniel Pelt, Joost Batenburg

Wed 13 Nov 2019, Artificial Intelligence Applied to Photon and Neutron Science

Can we do deep learning with less data?

- ImageNet (classification): millions of examples
- Low-dose CT Grand Challenge (denoising): 20 chest CTs
- Today (resolution improvement): 2 scans of same object
- Future: 1 scan?

Today: Can we use machine learning with two scans of single object?

A need for high-resolution imaging

Saadatfar et al, Imaging of metallic foams using x-ray micro-CT, 2009

Ketcham et al, Acquisition, optimization and interpretation of x-ray CT imagery, 2001

Fine details and regular structure

Goal

Improve resolution on single object CT reconstruction

- ☐ with same scanner
- ☐ with limited increase in computation time
- ☐ with limited increase in scan time
- ☐ for unique objects

Can we use machine learning to improve resolution in tomography?

Cone beam CT

Discretization

Discretize:

- volume on voxel grid $\mathbf{x} \in \mathbb{R}^{N_{\mathbf{x}} \times N_{\mathbf{x}} \times N_{\mathbf{x}}}$
- projection on $\mathbf{p} \in \mathbb{R}^{N_{ heta} imes N_{u} imes N_{v}}$

Linear system

Gives rise to linear system projecting volume onto detector

$$\mathbf{A}\mathbf{x} = \mathbf{p}$$

Voxel resolution

How is voxel resolution determined?

Improving resolution: Region of interest

- Problem 1: truncation artifacts due to red contribution to projection
- Problem 2: reconstructs only part of object

How to improve resolution

- Purely tomographic techniques often infeasible due to
 - detector size
 - scanning time

How to improve resolution

- Purely tomographic techniques often infeasible due to
 - detector size
 - scanning time
- Use deep learning
 - Good results on natural images
 - How to get training data?

Deep learning: A training set of one object

Use region of interest as training dataset

Acquisition

Scan the object twice:

- lacktriangle Once at low magnification yielding lacktriangle lacktriangle Once at low magnification yielding lacktriangle
- Once at high magnification yielding \mathbf{p}_{high}

Reconstruction

- 1. Reconstruct a coarse full volume $\mathbf{x}_{low} = \mathbf{FDK}(\mathbf{p}_{low})$
- 2.
- 3.

Reconstruction

- 1. Reconstruct a coarse full volume $\mathbf{x}_{low} = \mathbf{FDK}(\mathbf{p}_{low})$
- 2. Mask and reproject at high magnification $P_{reproj} = \mathbf{A}^{(1 \to 2)} \mathbf{M} \mathbf{x}_{low}$

3.

Reconstruction

- 1. Reconstruct a coarse full volume $\mathbf{x}_{low} = \mathbf{FDK}(\mathbf{p}_{low})$
- 2. Mask and reproject at high magnification $P_{reproj} = \mathbf{A}^{(1 \to 2)} \mathbf{M} \mathbf{x}_{low}$
- 3. Reconstruct a ROI $\mathbf{x}_{high} = \mathbf{FDK}(\mathbf{p}_{high} \mathbf{p}_{reproj})$

Prepare training set

Low-resolution full-volume reconstruction and high-resolution region of interest reconstruction do not match in physical volume and voxel size

Prepare training set: same grid

To match resolution, there are two choices:

- Method A: Upsample input
- Method B: Downsample target

Training: slice by slice

- Network is trained slice by slice
- Also input some slices above and below in a slab to supply network with quasi-3D information

Recap

- Acquisition (1) and (2)
- Reconstruction (3) and (5)
- Preparing a training set (4)
- Training (6)
- Improving resolution (7)

Experiments

- Tomography: Use ASTRA toolbox
- Deep learning: Use Mixed-Scale Dense network architecture ^{1, 2, 3}
 - Can be applied to large images
 - Good results for tomographic images
 - Does not easily overfit!

¹Pelt et al, PNAS 2018

²https://GitHub.com/ahendriksen/msd_pytorch

³https://github.com/dmpelt/msdnet

Results: Oatmeal

Projection image

Central slice

Results: Oatmeal

- Scanned in FlexRay CT scanner, developed by XRE NV
- \blacksquare Detector: 1944 \times 1536 square pixels of size 75 $\mu\mathrm{m}$
- Magnification factor \sim 4
- Voxel size: 68 μ m and 17 μ m

Results: Oatmeal

Summary

A novel acquisition + reconstruction + machine learning method that improves resolution

- ☑ with same scanner
- ☐ with limited increase in computation time
- ☑ with limited increase in scan time
- ☑ for unique objects

Future work: 1 scan denoising

Deep CNN 1 scan No additional data!

Thank you for your listening

For more information: allard.hendriksen@cwi.nl

Hendriksen, Pelt, Palenstijn, Coban, Batenburg, On-the-fly machine learning for improving image resolution in tomography, Applied Sciences, 9(12), (2019). http://dx.doi.org/10.3390/app9122445

Backup slides

Outlook II

MSD network

- New neural network, MS-D-Net, specifically developed for scientific imaging problems
- Obtain accurate results with relatively few parameters
 - Less overfitting, better with limited data
- Able to process large images (e.g. 2k x 2k)
- Automatically adapt to various problems
- Can be applied to a wide variety of problems
 - Artifact removal, segmentation, etc...
- Open source implementation release soon!

Daniël Pelt et al, A mixed-scale dense convolutional neural network for image analysis, PNAS (2017)

Daniël Pelt et al, Improving Tomographic Reconstruction From Limited Data Using Mixed-Scale Dense Convolutional Neural Networks, Journal of Imaging (2018)

MSD: real-world data

- Tomobank fatigue-corrosion data (De Carlo et al, MST 2018)
 - 2160x2560x2560 voxels
- Use first and last scans as training data
- Shown is an intermediate scan

How to improve resolution I: Center object

Making optimal use of the detector is always recommended.

How to improve resolution II: Smash & Scan

Geological samples are often broken into pieces before being scanned.

How to improve resolution IV: Flexible detector setup

- Make a larger virtual detector by scanning 4 × 4 times
 - 16× more pixels, 4× more angles
- Problem 1: Not every detector setup is flexible
- Problem 2: 64 times more data

How to improve resolution: recap

Options for improving resolution:

- 1. Move object into field of view: nice, but not enough
- 2. Smash & scan: destructive, only part of object
- Region of interest: only part of object, truncation artifacts
- 4. **Tiling**: not always possible, long scan times, and more data / computation

What else can we do? \rightarrow Deep learning

Deep learning: A training set of CT data

Creating a training dataset for CT is expensive:

- high-resolution scans require long scanning time
- high-resolution reconstructions require long computation time

Creating a training dataset for CT must often be repeated:

- for different scanning geometries
- for different scanners
- for different beam settings (tube power and voltage)
- for different types of objects

Moreover, if the object under investigation is unique, then it is not possible to obtain such large set of training examples

Results: Foam phantom

Central slice of foam bubble

Results: Foam phantom

- 90,000 bubbles:
 - Non-overlapping
 - Randomly placed and randomly sized
- Projection dataset
 - With Gaussian blur on the detector (σ of 2 pixels)
- 1k x 1k detector, 1500 angles
- Magnification factor 4
- Projections generated using cone_balls ⁴

⁴https://github.com/ahendriksen/cone_balls

Results: Foam phantom

