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Experimental setup
and recorded data
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Experimental setup

« Single-shot CDI experiment of individual

. . beam dum
rotating helium nanodroplets (100nm - 500nm radius), P
with high angular momentum, using extreme
ultraviolet light pulses from the
FERMI free-electron laser

Scattering detector
A= 32 nm to 65 nm MCP / Phosphor screen
E=50 1) to350 uJ ,\_»dr
60fs<t<100fs Q?/\/ interaction - ngt bea
region 9m skimmer

Even-Lavie valve
80 bar He, 5K
baffle system

Langbehn, B et al. Phys. Rev. Lett. 121, 255301 (2018)
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The Problem @)

From these diffraction images we
can infer the topology of particles
in free flight

Using pump-probe schemes, we can
also record dynamic processes
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The Problem a2

—

GET ALL THE
INFORMATION You CAN,
We'LL THINK ¢F A

USe FoR (T LATER.

- The high repetition rates at FELs
produce large data sets with up to
several million diffraction pattern
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The Problem @)

- Almost same particle but different
patterns

- Handcrafted algorithms can't easily

identify that this feature belongs to
the same particle
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Non-exlusive other subclasses

Asymmeiric Newten Rings Layered

) ) ) Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019)
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Our first approach:
Supervised learning



MaX BOI‘n Instltute tor Nonlincar Optics and Short Pulse Spectroscopy

Idea

A directed acyclic graph consisting of
hierarchically structured non-linear functions

Convolutional layers Fully connected layers

Spherical
Round
Elliptical
Newton rings
Prolate
Bent
Asymmetric
Streak
Double Rings
Layered

N

Feature maps Kernel Activation function Logistic function

Input — Feature extraction — Classification
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Idea

1. Have a researcher classify a subset of the data

Spherical

Asymmetric
Streak
Double Rings
Layered

Input
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Idea
1. Have a researcher classify a subset of the data

2. Use this dataset as training data for a convolutional neural network

Convolutional layers

\u:uffﬁ

|

.
1
\
\
\

[

Feature maps Kernel Activation function

Input —— Feature extraction —
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Idea

1. Have a researcher classify a subset of the data
2. Use this dataset as training data for a convolutional neural network

3. Use the trained network to classify the rest of the dataset

Convolutional layers Fully connected layers

] Spherical
] Round

Asymmetric
Streak
Double Rings
Layered

Feature maps Kernel Activation function Logistic function

Input — Feature extraction — Classification
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What is inside a neural network?



The convolution

Convolutional layers

T Egy
\\\
Feature maps Kornul\/\mmmm function
— Feature extraction —

Deep learning for classifying and sorting diffraction images | Julian Zimmermann

M3l



MaX BOI‘n Instltute tor Nonlincar Optics and Short Pulse Spectroscopy

The convolution Convolutionallayers

Input m—p  Feature extraction —_— Classification

Feature maps Kernel "Activation function

Input

Filter Feature map

44+0+0+124+5+284+8+24+5=286
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The convolution Convolationallayers

L
Feature maps Kernel "Activation function

— Feature extraction — Classificz

Input

- ldea: Nearby pixel are correlated

Filter Feature map

- Filter is called receptive field

44+0+0+124+5+284+8+24+5=286
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Fully connected layers

Convolutional layers

—
L G

/- Newion s
Bt

N \
N \ =
o mﬁ function

Kernel “Activation function

The loss function

Feature maps

Feature extraction — Classification

Input  e—t
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The loss function

Fully connected layers

8 |
e

L2

Logistic function

1. Cross entropy

Classification

E(p,q) = — Z pi (x) log (g; (x))

p;j (x) := ground truth,
g (x) :== sigmoid function,
X = Output of the network

Vector of weights — (X - wy)

=X—X-p;(x)+log (1+exp™)
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Backpropagation

Feature maps
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Convolutional layers Fully connected layers

s
- Elbpocal
5 e
5
| Aw-m-vwkn
Dot
Kemel “Activation function Logistic function

~agmm=  Backpropagate the error

E
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Backpropagation Convolutionllayers

"Activation function

Fully connected layers

Logistic function

~agmm=  Backpropagate the error

2. Apply the chain rule

OE - OE 8X[
aWM - Z

3. Use a gradient descent algorithm to solve for wy,

Deep learning for classifying and sorting diffraction images | Julian Zimmermann



Our results
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Different architectures

0.965
) 0.960
- Even the lowest performing .
£ 0.955
neural network can :
. S 0.950
outperform previous <
. . .2 —a—
classification approaches g 008 ﬁ‘fsﬁegi- o= 82
. _ - esiNe o= U,
by a large margin £ 0910 —— ResNetl0L: a = 0.2
0.935 — VGGI16: a=0.2
— VGG19: a=0.2
0.930
0 1 2 3 4 5 6

Training Wall Time (h)

) . ) . o . . Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019)
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Interpretation




M3l
- Streak: The network was able to identify the dominant streak feature
regardless of its orientation or size

- Bent: Strong resemblance is visible

u) Strenk

b) Penc

Zimmermann, J. et al. Phys. Rev. E 99, C
GradCam++: Chattopadhyay, A. et al. IEEE 101109/
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Our second approach:
Unsupervised learning
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Idea

1. Give a neural network an image and force the network to reduce the
dimensionality

Encoder Decoder:
(who gets an image x and latent encoding z
learns a latent encoding z -> q(zx)) image x'

——EN - . |
- q
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Idea

1. Give a neural network an image and force the network to reduce the
dimensionality

2. Reproduce the original image from this reduced representation

Encoder Decoder: .
image x (who gets a latent encoding z and s
/ latent encoding z learns an image x' -> p(x[z))
( A 2 12 128
ﬁ?’ \ﬁ g 1024 —
j,—/ T '
) y
128
4 Conv.1 Conv.2 Conv.3 Conv. 4
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Idea

1. Give a neural network an image and force the network to reduce the
dimensionality
2. Reproduce the original image from this reduced representation

3. This is called Autoencoder we use a g-rcvar

Encoder Decoder: .
(who gets animage x and (who gets a latent encoding z and &
learns a latent encoding z -> q(z[x)) learns an image x' -> p(x|z))
256
- — 128
1024 ——— 3 64
= S, 16 =)
= 8 =
— - 8 === .
16
Latent Space 32
128
Conv.1 Conv.2 Conv.3 Conv.4

. o . . L ) . *Chen, T. Q. et al. arXiv:1802.04942 (2018)
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L4
f-

1. Minimize the error between the original image and the generated one

Loss function

Encoder
image x
latent encoding z

Reconstruction Loss

L= IEq(z|x’) [|Og p(Xi|Z)]
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Loss function

‘ Enwﬂ?;.’ ‘ DeCOd;e,"j_ )

atent

T

2. Model the latent space as a statistical distribution

Latent space penalty

L= =D (q(zIX) || p(2))
with Dy, being the Kullback-Leibler divergence:

Du(P Il Q)= 3 P(x)log <@>

xXeX Q(X)
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Loss function

3. Make the latent encodings independent from one another

Total correlation penalty

L= 7 D(a(@) [19(2))

with G(2), being the factorial distribution over q(z):
d

7@ =[Ta@)

J=1
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Evaluate the latent space

1. We use the same Helium nanodroplets dataset
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Evaluate the latent space

1. We use the same Helium nanodroplets dataset

2. We apply an unsupervised clustering routine on the latent space, clied aussian

Mixture Model (GMM)

Deep learning for classifying and sorting diffraction images | Julian Zimmermann



MaX BOI‘n Instltute tor Nonlincar Optics and Short Pulse Spectroscopy A‘S\
Ll A\

Evaluate the latent space

1. We use the same Helium nanodroplets dataset

2. We apply an unsupervised clustering routine on the latent space, clied aussian
Mixture Model (GMM)

3. We compare our results with the current state-of-the-art approach; spectal

clustering on raw images*

) o - o o *Yoon, H. C. et al. Opt. Express 19, 16542-16549 (2011)
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Evaluate the latent space

1. We use the same Helium nanodroplets dataset

2. We apply an unsupervised clustering routine on the latent space, clied aussian
Mixture Model (GMM)

3. We compare our results with the current state-of-the-art approach; spectal
clustering on raw images*

31 We examine how well both routines align with the pre-defined labels of our
supervised approach.

) . ) . o . . *Yoon, H. C. et al. Opt. Express 19, 16542-16549 (2011)
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The predicted classes for both
routines
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We use three metrics for assessment (All normalized between 0 and 1):
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We use three metrics for assessment (All normalized between 0 and 1):

1. Homogeneity:

- A clustering result satisfies homogeneity if all of its clusters contain only data
points which are members of a single class
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We use three metrics for assessment (All normalized between 0 and 1):

1. Homogeneity:

- A clustering result satisfies homogeneity if all of its clusters contain only data
points which are members of a single class

2. Completeness:

- A clustering result satisfies completeness if all the data points that are
members of a given class are elements of the same cluster
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We use three metrics for assessment (All normalized between 0 and 1):

1. Homogeneity:

- A clustering result satisfies homogeneity if all of its clusters contain only data
points which are members of a single class

2. Completeness:

- A clustering result satisfies completeness if all the data points that are
members of a given class are elements of the same cluster

3. Adjusted Rand score:

- The Rand Index computes a similarity measure between two clusterings by
considering all pairs of samples and counting pairs that are assigned in the
same or different clusters in the predicted and true clusterings

Deep learning for classifying and sorting diffraction images | Julian Zimmermann
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The predicted classes for both routines

GMM on VAE encodings  Spectral clustering on raw images

Homogeneity 0.826 0.204
Completeness 0.872 0.221
Adjusted Rand score 0.700 0.321

- Significant improvements:
- 4.0 times more homogeneous

- 3.9 times more complete
- 2.2 times more accurate according to Rand score

Deep learning for classifying and sorting diffraction images | Julian Zimmermann
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Predicted Classes

w

~

Gaussian Mixture Model clustering on VAE's latent space

0.25 0.11 0.00 0.00 0.08 0.00 5

001 0.04 0.00 0.00 003 4
8
013 0.00 0.00 029 0.00 83
2
o]
o
v
5
0.03 0.00 012 0.00 T2
o

0.18 0.04 0.01
0.00 0.20 0.02
D> > Y 3 NS
o & < & \5“\& o
< o N
Al QP

True Classes
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Spectral Clustering on raw diffraction images
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Outlook
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Outlook

- Try to discriminate
characteristic features
directly in latent space

)

D
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Outlook

40
. 0
Extend to simulated data. Eg, in 0
combination with the 50,5
Multi-Slice-Fourier-Transform (MSFT) b)
method
-100! \
-100
e

10019
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Outlook
ol
- Extend to online analysis during $
. /”'
experiment
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Summary

1. We successfully adapted and published a state-of-the-art convolutional
neural network for the domain of diffraction images*

- The network was able the learn the same features that a researcher identified

* Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019)
Langbehn, B et al. Phys. Rev. Lett. 121, 255301 (2018)
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Summary

1. We successfully adapted and published a state-of-the-art convolutional
neural network for the domain of diffraction images*

- The network was able the learn the same features that a researcher identified

2. Using unsupervised learning we improved significantly on the current
state-of-the-art

- We use a VAE to encode the information in a latent space that we cluster using
a density based approach

- This is still work in progress, but so far the prospect looks promising

* Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019)
Langbehn, B et al. Phys. Rev. Lett. 121, 255301 (2018)

Deep learning for classifying and sorting diffraction images | Julian Zimmermann



MaX BOI‘n Instltute tor Nonlincar Optics and Short Pulse Spectroscopy AAB\
Ll A\

Summary

1. We successfully adapted and published a state-of-the-art convolutional
neural network for the domain of diffraction images*

- The network was able the learn the same features that a researcher identified

2. Using unsupervised learning we improved significantly on the current
state-of-the-art

- We use a VAE to encode the information in a latent space that we cluster using
a density based approach

- This is still work in progress, but so far the prospect looks promising

Source code is freely available on Github written in python > 36 using Tensorflow)

* Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019)
Langbehn, B et al. Phys. Rev. Lett. 121, 255301 (2018)
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Self-attention

- Let the neural network decide where to look

L3 transpose attention
b map

softmax self-attention
feature maps (o)
v(x)
‘ Ixlconv

convolution
feature maps (x)

Ixlconv

Ixlcony

Zhang, H. et al. arXiv:1805.08318 (2018)

Deep learning for classifying and sorting diffraction images | Julian Zimmermann



Using cross-correlation function /2
- Higher orders of the two-point cross-correlation function can be used to
increase the signal-to-noise ratio of a diffraction image

Noise: No Noise Noise: Mean Noise: Mean + Std Noise: Max

Deep learning for classifying and sorting diffraction images | Julian Zimmermann
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Using cross-correlation function /2

0.96

- Itis a viable alternative to oo
. =
- 153

use the two p.omt. Som
cross-correlation images as g
. <

input to the neural network =093
is

0.92

0.91
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—— Max accuracy of ResNet18 with CCF
—— Max accuracy of ResNet18 without CCF

1

Noise Level

2

3
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The activ

—— Radial profile of the diffraction pattern

Exponential fit

0 200 100 600 800 1000 1200 1400
Radius from center (px)

=100

y (arb. un

10°

—— Diagonal of the correlation map

Exponential fit
10%

0 50 100 150 200 250
Distance along the diagonal (px)

0.6

0.4

0.0
0.2

—0.4

—0.6
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All accuri "™

0.960

o
o
&
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0.945

Evaluation Accuracy
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0.935

0.930
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Evaluation Accuracy
o
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B

1.00

ResNet18:
—— ResNet50:

1

2 3 4 5 6
Training Wall Time (h)

— ResNet101: a = 0.2
— VGGI16: a =102
— VGG19: a =102

—— Max accuracy of ResNet18

0.75 0.50
Size of the training (Fraction of the full size)
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—— Max accuracy of ResNet18 with CCF

ResNet18: a = 0.2
— ResNetl8: a=0.5
—— ResNetl8: a = 1.0
—— ResNet18: No log activation

100 125
Training Epochs

150

175

200

—— Max accuracy of ResNet18 without CCF

1

Noise Level

2

3

’



MaX BOI‘n Instltute tor Nonlincar Optics and Short Pulse Spectroscopy

[1] Langbehn, B et al. Phys. Rev. Lett. 121, 255301 (2018)

[2] Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019)

[3] Emma, et al. doi: 101038/nphoton.2010.176

[4] Bostedt, et al. doi: 10.1103/RevModPhys.88.015007

Bobkov, S. A. et al. J. Synchrotron Radiat. 22, 1345-1352 (2015).
Zhang, H. et al. arXiv:1805.08318 (2018)

Kingma, D. P. et al. Iclr 1-14 (2014) doi:10.1051/0004-6361/201527329
8] Chen, T. Q. et al. arxiv:1802.04942 (2018)

—
Ul
—_— T e e e

Deep learning for classifying and sorting diffraction images | Julian Zimmermann



	Experimental setup and recorded data
	Our first approach: Supervised learning
	What is inside a neural network?
	Our results
	Interpretation
	Our second approach: Unsupervised learning
	The predicted classes for both routines
	Outlook

