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Experimental setup
and recorded data



Experimental setup

Langbehn, B et al. Phys. Rev. Lett. 121, 255301 (2018)
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The Problem (2/2)

• From these diffraction images we
can infer the topology of particles
in free flight

• Using pump-probe schemes, we can
also record dynamic processes
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The Problem (1/2)

• The high repetition rates at FELs
produce large data sets with up to
several million diffraction pattern
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The Problem (2/2)

• Almost same particle but different
patterns

• Handcrafted algorithms can’t easily
identify that this feature belongs to
the same particle
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Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019)
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Our first approach:
Supervised learning



Idea

1. Have a researcher classify a subset of the data
2. Use this dataset as training data for a convolutional neural network
3. Use the trained network to classify the rest of the dataset

A directed acyclic graph consisting of
hierarchically structured non-linear functions
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What is inside a neural network?



The convolution
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The convolution
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The convolution

• Idea: Nearby pixel are correlated
• Filter is called receptive field
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The loss function
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The loss function

1. Cross entropy

E(p,q) = −

∑

i
pi (x) log (qi (x))

...
= x− x · pi (x) + log

(

1+ exp−x
)

pi (x) := ground truth,
qi (x) := sigmoid function,
x := Output of the network

Vector of weights→ (x̂ · wkl)
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Backpropagation
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Backpropagation

2. Apply the chain rule

∂E
∂wkl

=
∑

l

∂E
∂xl

∂xl
∂wkl

3. Use a gradient descent algorithm to solve for wkl
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Our results



Different architectures

• Even the lowest performing
neural network can
outperform previous
classification approaches
by a large margin

Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019)
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Interpretation



Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019)
GradCam++: Chattopadhyay, A. et al. IEEE 10.1109/WACV.2018.00097 (2018)

• Streak: The network was able to identify the dominant streak feature
regardless of its orientation or size

• Bent: Strong resemblance is visible
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Our second approach:
Unsupervised learning



Idea

1. Give a neural network an image and force the network to reduce the
dimensionality

2. Reproduce the original image from this reduced representation
3. This is called Autoencoder (We use a -TCVAE)*
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Idea

1. Give a neural network an image and force the network to reduce the
dimensionality

2. Reproduce the original image from this reduced representation
3. This is called Autoencoder (We use a β-TCVAE)*

*Chen, T. Q. et al. arXiv:1802.04942 (2018)
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Loss function

1. Minimize the error between the original image and the generated one

L =

Reconstruction Loss
︷ ︸︸ ︷

Eq(z|xi)

[

log p(xi|z)
]

−

Latent space penalty
︷ ︸︸ ︷

DKL(q(z|xi) ‖ p(z))−γ

Total correlation penalty
︷ ︸︸ ︷

DKL(q(z) ‖ q(z)) ,

where DKL is the Kullback-Leibler divergence:

DKL(P ‖ Q) =
∑

x∈X

P(x) log
(

P(x)
Q(x)

)
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Loss function

2. Model the latent space as a statistical distribution

L =

Reconstruction Loss
︷ ︸︸ ︷

Eq(z|xi)

[

log p(xi|z)
]

−

Latent space penalty
︷ ︸︸ ︷

DKL(q(z|xi) ‖ p(z))−γ

Total correlation penalty
︷ ︸︸ ︷

DKL(q(z) ‖ q(z)) ,

with DKL , being the Kullback-Leibler divergence:

DKL(P ‖ Q) =
∑

x∈X

P(x) log
(

P(x)
Q(x)

)
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Loss function

3. Make the latent encodings independent from one another

L =

Reconstruction Loss
︷ ︸︸ ︷

Eq(z|xi)

[

log p(xi|z)
]

−

Latent space penalty
︷ ︸︸ ︷

DKL(q(z|xi) ‖ p(z))−γ

Total correlation penalty
︷ ︸︸ ︷

DKL(q(z) ‖ q(z)) ,

with q(z), being the factorial distribution over q(z):

q(z) =

d
∏

j=1
q(zj)
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Evaluate the latent space

1. We use the same Helium nanodroplets dataset

2. We apply an unsupervised clustering routine on the latent space, called Gaussian
Mixture Model (GMM)

3. We compare our results with the current state-of-the-art approach; Spectral
clustering on raw images*

3.1 We examine how well both routines align with the pre-defined labels of our
supervised approach.
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The predicted classes for both
routines



We use three metrics for assessment (All normalized between 0 and 1):

1. Homogeneity:

• A clustering result satisfies homogeneity if all of its clusters contain only data
points which are members of a single class

2. Completeness:

• A clustering result satisfies completeness if all the data points that are
members of a given class are elements of the same cluster

3. Adjusted Rand score:

• The Rand Index computes a similarity measure between two clusterings by
considering all pairs of samples and counting pairs that are assigned in the
same or different clusters in the predicted and true clusterings
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The predicted classes for both routines

GMM on VAE encodings Spectral clustering on raw images

Homogeneity 0.826 0.204
Completeness 0.872 0.221
Adjusted Rand score 0.700 0.321

• Significant improvements:
• 4.0 times more homogeneous
• 3.9 times more complete
• 2.2 times more accurate according to Rand score
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Outlook



Outlook

• Try to discriminate
characteristic features
directly in latent space
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Outlook

• Extend to simulated data. E.g., in
combination with the
Multi-Slice-Fourier-Transform (MSFT)
method
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Outlook

• Extend to online analysis during
experiment
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Summary

1. We successfully adapted and published a state-of-the-art convolutional
neural network for the domain of diffraction images*

• The network was able the learn the same features that a researcher identified

2. Using unsupervised learning we improved significantly on the current
state-of-the-art

• We use a VAE to encode the information in a latent space that we cluster using
a density based approach

• This is still work in progress, but so far the prospect looks promising

Source code is freely available on Github (written in Python > 3.6 using Tensorflow)

Langbehn, B et al. Phys. Rev. Lett. 121, 255301 (2018)
* Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019)
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Thank you!
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Self-attention

• Let the neural network decide where to look

Zhang, H. et al. arXiv:1805.08318 (2018)
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Using cross-correlation function (1/2)

• Higher orders of the two-point cross-correlation function can be used to
increase the signal-to-noise ratio of a diffraction image

Noise: No Noise

a)

Noise: Mean

b)

Noise: Mean + Std

c)

Noise: Max

d)

e) f) g) h)
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Using cross-correlation function (2/2)

• It is a viable alternative to
use the two-point
cross-correlation images as
input to the neural network
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The activation function
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All accuracies
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