

Deep learning for classifying and sorting diffraction images

Julian Zimmermann | Max-Born-Institute Berlin

Acknowledgements

Max-Born-Institute:

D. Rupp M. Sauppe K. Kolatzki B. Senfftleben R.M.P. Tanyag M.J.J. Vrakking A. Rouzée

FERMI collaboration:

R. Cucini M. Di Fraia P. Finetti A. C. LaForge T. Nishiyama Y. Oscharenko P. Piseri O. Plekan K. C.Prince F. Stienkemeier K. i Ueda C. Callegari

University Rostock:

T. Fennel C. Peltz B. Kruse K. Sander

TU Berlin:

B. Langbehn

Experimental setup and recorded data

Experimental setup

Langbehn, B et al. Phys. Rev. Lett. 121, 255301 (2018)

The Problem (2/2)

- From these diffraction images we can infer the topology of particles in free flight
- Using pump-probe schemes, we can also **record dynamic processes**

The Problem (1/2)

• The high repetition rates at FELs produce large data sets with up to **several million** diffraction pattern

The Problem (2/2)

- Almost same particle but different patterns
- Handcrafted algorithms can't easily identify that this feature belongs to the same particle

Non-exlusive other subclasses

Our first approach: Supervised learning

A directed acyclic graph consisting of hierarchically structured non-linear functions

1. Have a researcher classify a subset of the data

Input

MBI

Idea

- 1. Have a researcher **classify a subset** of the data
- 2. Use this dataset as **training data** for a convolutional neural network

- 1. Have a researcher classify a subset of the data
- 2. Use this dataset as **training data** for a convolutional neural network
- 3. Use the trained network to **classify the rest** of the dataset

What is inside a neural network?

4 + 0 + 0 + 12 + 5 + 28 + 8 + 24 + 5 = 86

4 + 0 + 0 + 12 + 5 + 28 + 8 + 24 + 5 = 86

The loss function Convolutional layers Fully connected layers

$$E(p,q) = -\sum_{i} p_{i}(\mathbf{x}) \log (q_{i}(\mathbf{x}))$$

$$\vdots$$

$$= \mathbf{x} - \mathbf{x} \cdot p_{i}(\mathbf{x}) + \log (1 + \exp^{-\mathbf{x}})$$

$$p_{i}(\mathbf{x}) \coloneqq \text{ground truth,}$$

$$q_{i}(\mathbf{x}) \coloneqq \text{sigmoid function,}$$

$$\mathbf{x} \coloneqq \text{Output of the network}$$

$$\text{Vector of weights} \rightarrow (\hat{\mathbf{x}} \cdot w_{kl})$$

Backpropagation Convolutional layers Fully connected layers

2. Apply the chain rule

$$\frac{\partial E}{\partial w_{kl}} = \sum_{l} \frac{\partial E}{\partial x_l} \frac{\partial x_l}{\partial w_{kl}}$$

3. Use a gradient descent algorithm to solve for w_{kl}

Our results

Different architectures

 Even the lowest performing neural network can outperform previous classification approaches by a large margin

Interpretation

- **Streak**: The network was able to identify the dominant streak feature regardless of its orientation or size
- Bent: Strong resemblance is visible

Deep learning for classifying and sorting diffraction images | Julian Zimmermann

Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019) GradCam++: Chattopadhyay, A. et al. IEEE 10.1109/WACV.2018.00097 (2018) Our second approach: Unsupervised learning

1. Give a neural network an image and **force the network to reduce the dimensionality**

- 1. Give a neural network an image and **force the network to reduce the dimensionality**
- 2. Reproduce the original image from this reduced representation

- 1. Give a neural network an image and **force the network to reduce the dimensionality**
- 2. Reproduce the original image from this reduced representation
- 3. This is called **Autoencoder** (We use a β -TCVAE)*

1. Minimize the error between the original image and the generated one

$$\mathbb{L} = \underbrace{\mathbb{E}_{q(z|x^{i})}\left[\log p(x^{i}|z)\right]}_{\text{Latent space penalty}} - D_{\text{KL}}(q(z|x^{i}) \parallel p(z)) - \gamma \underbrace{D_{\text{KL}}(q(z) \parallel \overline{q}(z))}_{\text{L}},$$

Loss function

2. Model the latent space as a statistical distribution

$$\mathbb{L} = \mathbb{E}_{q(z|x^{i})} \left[\log p(x^{i}|z) \right] - D_{\mathrm{KL}}(q(z|x^{i}) \parallel p(z)) - \gamma D_{\mathrm{KL}}(q(z) \parallel \overline{q}(z)),$$

$$Total correlation penalty$$

$$D_{\mathrm{KL}}(q(z) \parallel \overline{q}(z)),$$

with *D*_{KL}, being the Kullback-Leibler divergence:

$$D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)}\right)$$

Loss function

3. Make the latent encodings independent from one another

$$\mathbb{L} = \underbrace{\mathbb{E}_{q(z|x^{i})}\left[\log p(x^{i}|z)\right]}_{\text{Latent space penalty}} - \underbrace{D_{\text{KL}}(q(z|x^{i}) \parallel p(z))}_{\text{L}} - \gamma \underbrace{D_{\text{KL}}(q(z) \parallel \overline{q}(z))}_{\text{KL}},$$

with $\overline{q}(z)$, being the factorial distribution over q(z):

$$\overline{q}(z) = \prod_{j=1}^d q(z_j)$$

1. We use the same Helium nanodroplets dataset

- 1. We use the same Helium nanodroplets dataset
- 2. We apply an unsupervised clustering routine on the latent space, called Gaussian

Mixture Model (GMM)

- 1. We use the same Helium nanodroplets dataset
- 2. We apply an unsupervised clustering routine on the latent space, $_{\mbox{\tiny called Gaussian}}$

Mixture Model (GMM)

3. We **compare** our results **with the current state-of-the-art** approach; spectral clustering on raw images*

- 1. We use the same Helium nanodroplets dataset
- 2. We apply an **unsupervised clustering routine on the latent space**, called Gaussian Mixture Model (GMM)
- 3. We compare our results with the current state-of-the-art approach; spectral clustering on raw images*
 - 3.1 We examine how well both routines align with the pre-defined labels of our supervised approach.

The predicted classes for both routines

- 1. Homogeneity:
 - A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class

- 1. Homogeneity:
 - A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class
- 2. Completeness:
 - A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster

- 1. Homogeneity:
 - A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class
- 2. Completeness:
 - A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster
- 3. Adjusted Rand score:
 - The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings

The predicted classes for both routines

	GMM on VAE encodings	Spectral clustering on raw images
Homogeneity	0.826	0.204
Completeness	0.872	0.221
Adjusted Rand score	0.700	0.321

• Significant improvements:

- **4.0** times more homogeneous
- 3.9 times more complete
- 2.2 times more accurate according to Rand score

$Max \ Born \ Institute \ \ for \ Nonlinear \ Optics \ and \ Short \ Pulse \ Spectroscopy$

• Try to discriminate characteristic features directly in latent space

 Extend to simulated data. E.g., in combination with the Multi-Slice-Fourier-Transform (MSFT) method

 Extend to online analysis during experiment

MBI

Summary

- 1. We successfully **adapted and published** a state-of-the-art **convolutional neural network** for the domain of diffraction images*
 - The network was able the learn the same features that a researcher identified

* Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019) Langbehn, B et al. Phys. Rev. Lett. 121, 255301 (2018)

Summary

- 1. We successfully **adapted and published** a state-of-the-art **convolutional neural network** for the domain of diffraction images*
 - The network was able the learn the same features that a researcher identified
- 2. Using unsupervised learning we improved significantly on the current state-of-the-art
 - We use a VAE to encode the information in a latent space that we cluster using a density based approach
 - This is still work in progress, but so far the prospect looks promising

* Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019) Langbehn, B et al. Phys. Rev. Lett. 121, 255301 (2018)

Summary

- 1. We successfully **adapted and published** a state-of-the-art **convolutional neural network** for the domain of diffraction images*
 - The network was able the learn the same features that a researcher identified
- 2. Using unsupervised learning we improved significantly on the current state-of-the-art
 - We use a VAE to encode the information in a latent space that we cluster using a density based approach
 - This is still work in progress, but so far the prospect looks promising

Source code is freely available on Github (written in Python > 3.6 using Tensorflow)

* Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019) Langbehn, B et al. Phys. Rev. Lett. 121, 255301 (2018)

Thank you!

Self-attention

 \cdot Let the neural network decide where to look

Using cross-correlation function (1/2)

• Higher orders of the two-point cross-correlation function can be used to **increase the signal-to-noise ratio** of a diffraction image

Using cross-correlation function (2/2)

 It is a viable alternative to use the two-point cross-correlation images as input to the neural network

- [1] Langbehn, B et al. Phys. Rev. Lett. 121, 255301 (2018)
- [2] Zimmermann, J. et al. Phys. Rev. E 99, 063309 (2019)
- [3] Emma, et al. doi: 10.1038/nphoton.2010.176
- [4] Bostedt, et al. doi: 10.1103/RevModPhys.88.015007
- [5] Bobkov, S. A. et al. J. Synchrotron Radiat. 22, 1345–1352 (2015).
- [6] **Zhang, H. et al.** arXiv:1805.08318 (2018)
- [7] Kingma, D. P. et al. Iclr 1–14 (2014) doi:10.1051/0004-6361/201527329
- [8] Chen, T. Q. et al. arXiv:1802.04942 (2018)