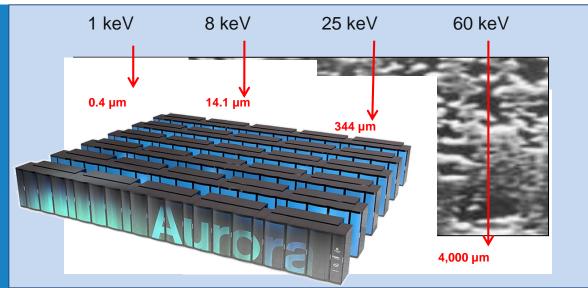


Machine Learning & Artificial Intelligence for Science at Argonne



STEFAN WILD

Computational Mathematician, Laboratory for Applied Mathematics, Numerical Software, & Statistics Deputy Director, Mathematics & Computer Science Division

Argonne National Laboratory

ESRF, Grenoble November 13, 2019

Today:

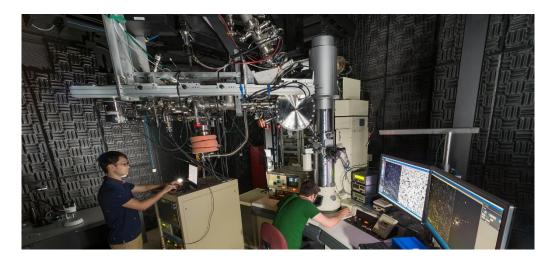
- 1. ML/Al at Argonne
- 2. ML/AI at APS vignettes

Al for Science Requires New Infrastructure & Research

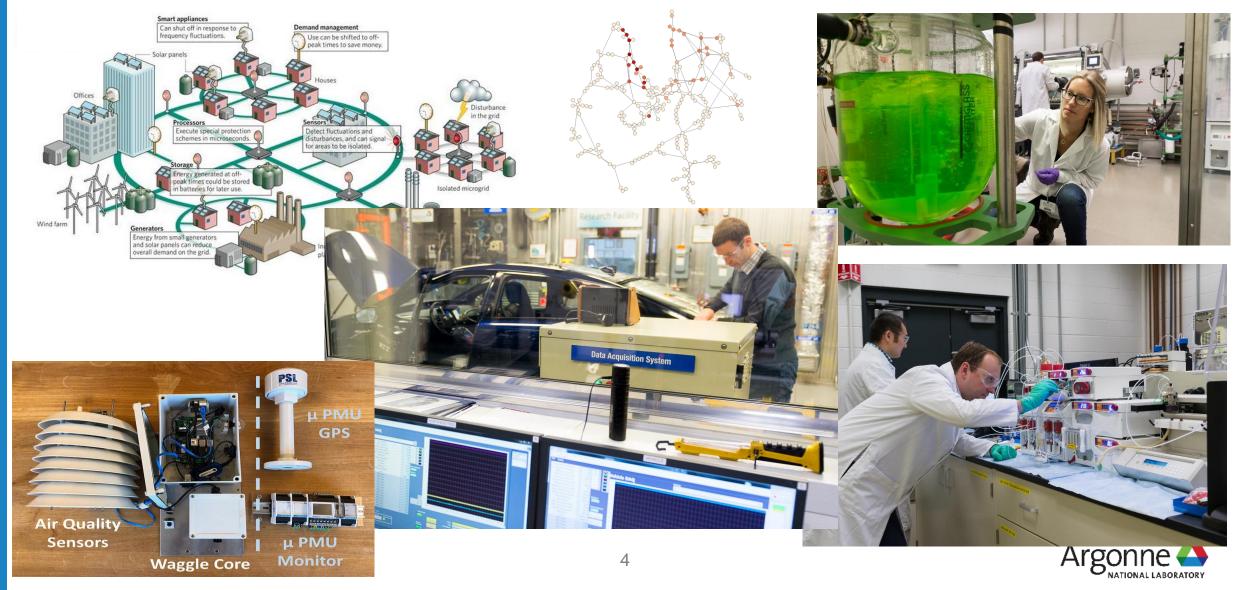
Applications	Al applications across science and engineering. Transformative approaches to simulation and experimental science.		
Learning systems	Al software. Software infrastructure for managing data, models, workflows etc., and for delivering Al capabilities to 10,000s of scientists and engineers.		
Foundations	Mathematics, algorithms; general AI, reinforcement learning, uncertainty quantification, explainability, optimization.		
Hardware	Advanced hardware to support Al. Evaluation of new architectures and systems; exploration of neuromorphic and quantum as long term accelerators for Al.		

Data at Argonne: Scientific User Facilities

- ATLAS
- ARM
- CNM
- APS
- IVEM
- ...

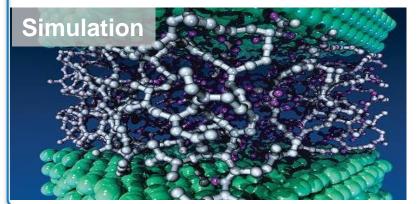


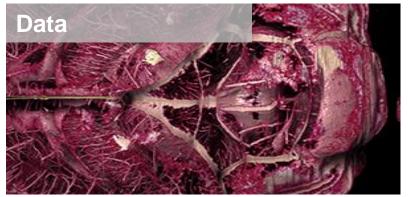
Intelligent Systems at Argonne: Energy, Manufacturing, Science, Synthesis

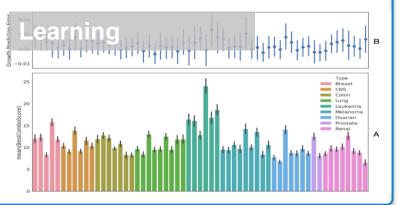


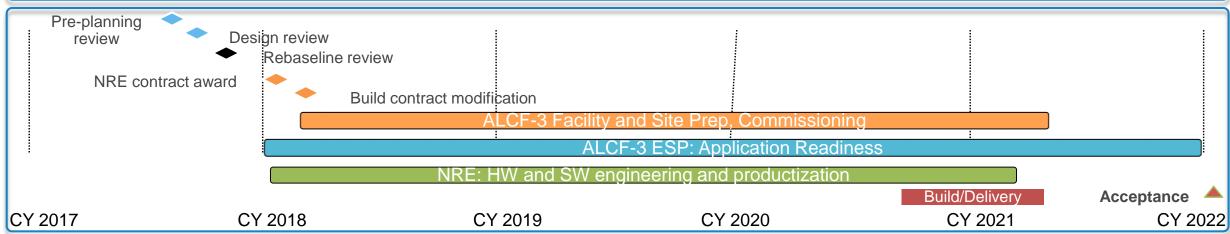
Aurora: US's First Exascale Supercomputer

Intel supercomputer to be delivered in 2021 Scaled up to over 1000 PF









Advancing the Foundations of Al for Science

Mathematical, statistical, & information-theoretic building blocks

Some exemplar grand challenges to address open problems

 How should scientific and engineering domain knowledge and governing principles from time-tested observations about natural phenomena be exploited in an AI era?

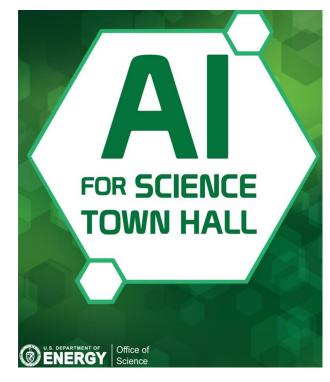
Enable understanding

 What are the limits of AI techniques? What assumptions and circumstances can lead to establishing assurance of AI predictions and decisions for science & engineering?

Increase trust

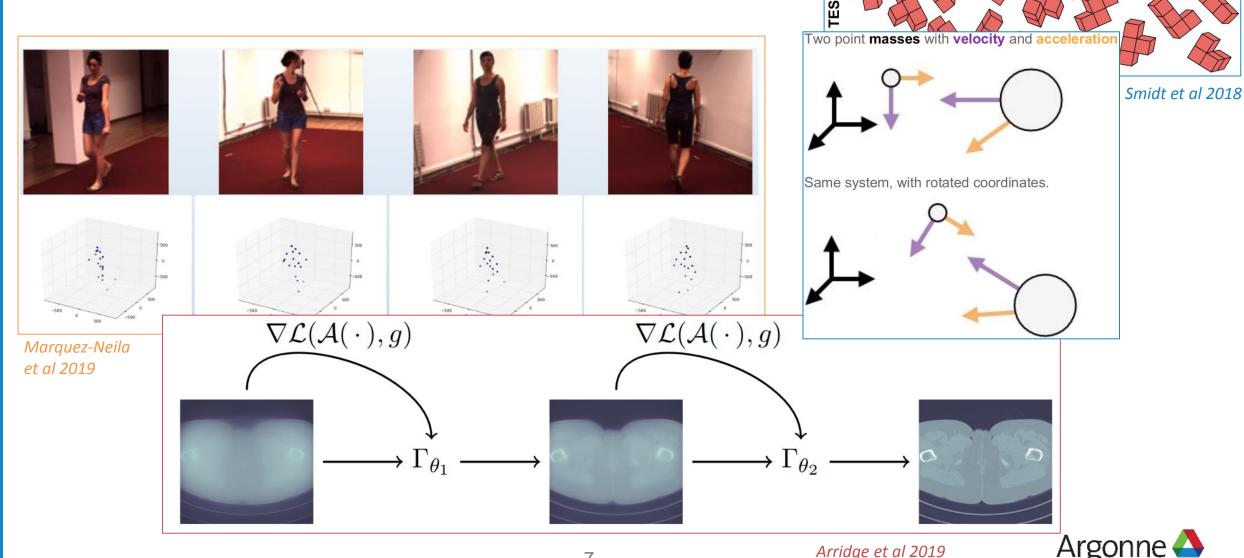
 Which AI techniques can best address different sampling scenarios and enable efficient AI on various computing and sensing environments?

Broaden applicability

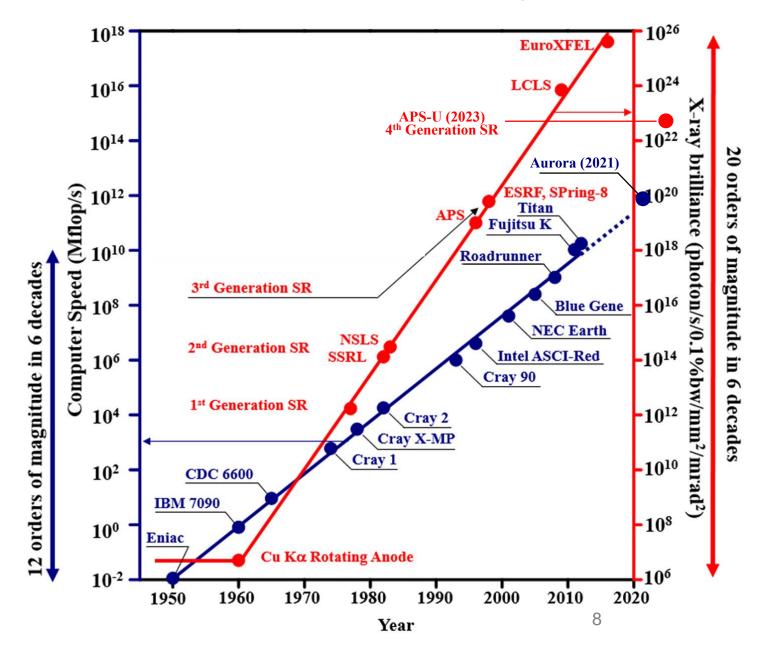


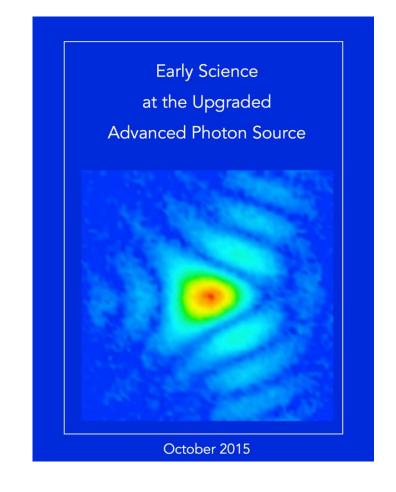
Expect report end of 2019

Emerging Examples of Leveraging Domain Knowledge



Moore's Law for X-Ray Source Brightness



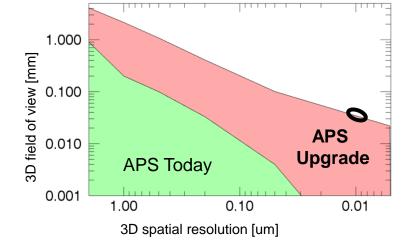


Al + X-Rays Motifs Emerging at Argonne

Ideal convergence: Intelligence in data, sensing, & computing

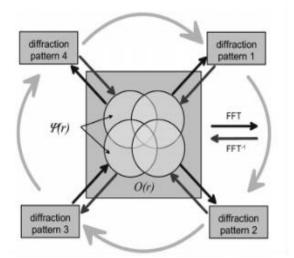
Scientific & measurement motifs include

- Detecting rare events
 large volumes, nanoscale resolution
- Capturing dynamic processes
 the ultra fast to the ultra slow
- Enabling multidimensional inquiry
 exploring spaces of higher dimension and size



Al & data science motifs include

- Offline learning and experimental design:
 HPC & ML as offline scale-bridging, prediction, and experiment-generating engine
- Analysis and reconstruction of massive, multimodal data volumes
- Online/real-time feature detection, dimension reduction, reinforcement learning, UQ, and active learning to drive an experiment



Neural Network-Enabled Diffractive Imaging

4D coherent diffraction imaging (CDI)

- CDI excels at 4D operando measurement
- Coherent imaging a primary driver for APS-U
 - 100X coherent flux:
 - How to effectively use these photons?
 - How to analyze 100X data increase?

Today: 512x512x512 arrays

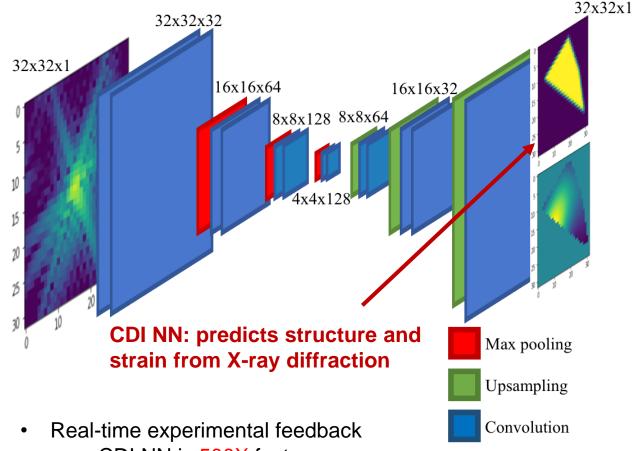
- ~30 Gb (for phasing)
- ~7 nm resolution

APS-U: 5120x5120x5120 arrays

- ~30 Tb (memory for phasing!)
- ~ 7 A resolution

Current CDI limitations

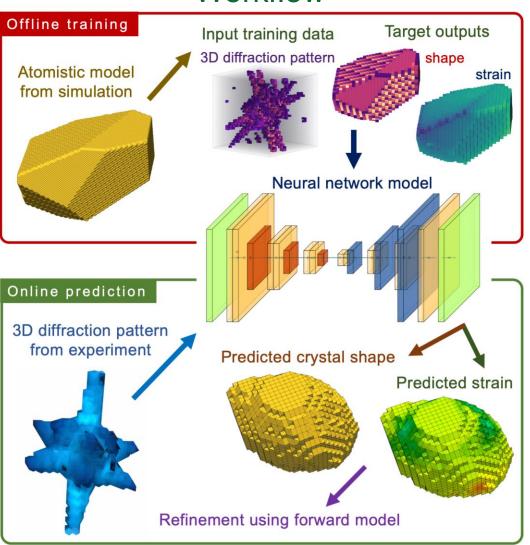
- Real-time experimental feedback not possible
 - 1000s of iterations; multiple restarts
- Strong phase objects (e.g., materials with defects) do not reconstruct
- Novice users struggle to tune convergence parameters for successful object reconstruction



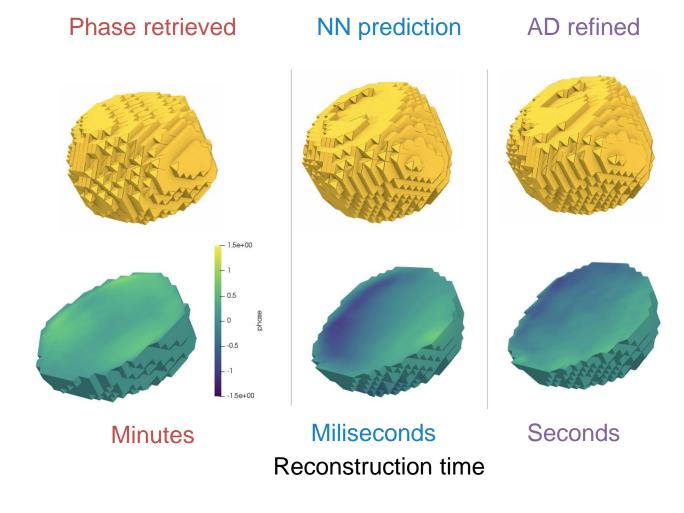
- CDI NN is 500X faster
- Excellent predictions on strong phase objects
 - Can now image defective materials
- Once trained, no parameters for users to tune

Al CDI: Deep Learning + Simulation + AD

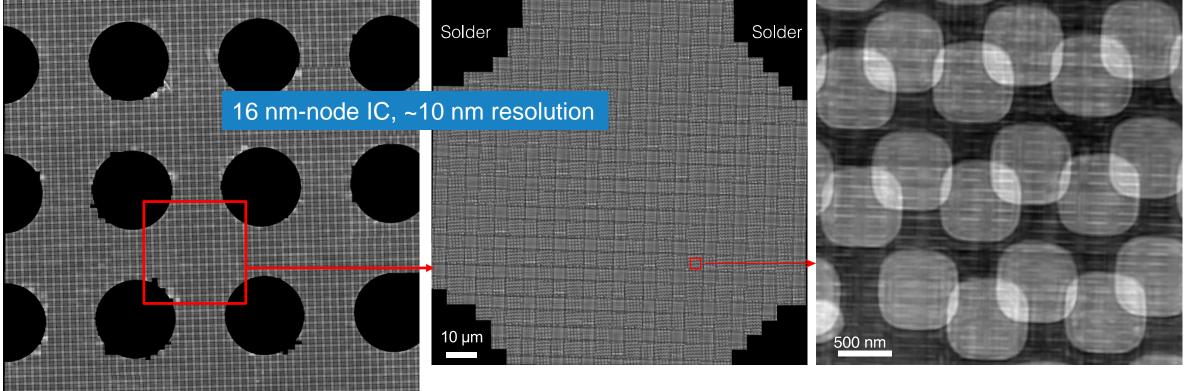
Workflow



Performance on experimental data



High-Resolution Ptychography on Large-Scale Samples



- 0.5 mm² area, 4 scan days, 42 TB raw data
- 10 GPUs, 30 days of reconstruction

600 µm

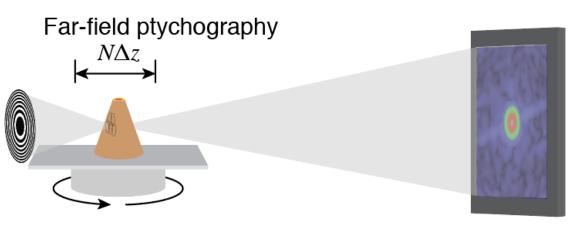
Scan speed 100x faster after APS-U

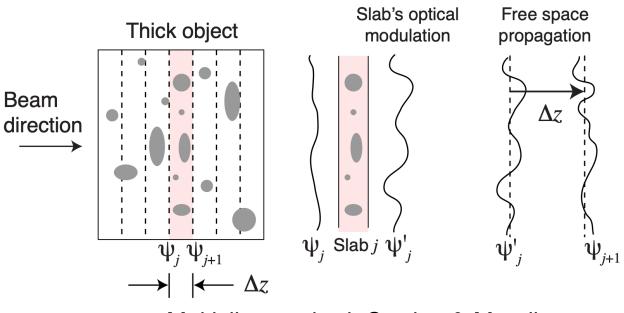
- Compute intensive, requires HPC infrastructure
- Machine learning-enhanced data acquisition and processing

Tools for Beyond-Depth-of-Focus Imaging

Exploit better understanding of the forward problem

- Looming problem: depth of focus goes like
 - DOF~5(transverse resolution)²/λ
 - Ex.- $5(5 \text{ nm})^2$ at 10 keV gives DOF=4 μ m
- Entering a regime where we no longer obtain pure projection images from thick specimens
 - x-ray imaging is otherwise perfect for
- Must account for beam propagation within the specimen, and how that changes illumination of downstream planes
 - violation of the Born approximation

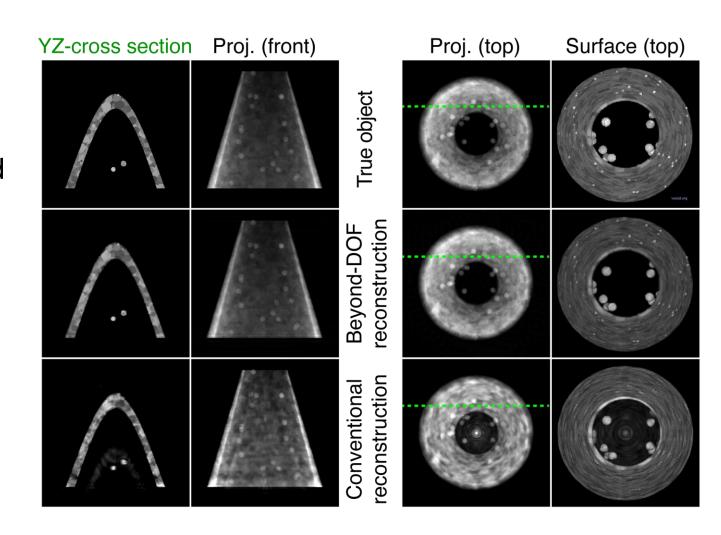




Multislice method: Cowley & Moodie, Proc PhySocLondon B (1957) Acta Crystallographica (1957)

Tools for Beyond-DOF Imaging

- Gradient-based optimization approach¹
- Automatic differentiation (AD) lets one easily change noise models, and add multiple nonlinear regularizers
- AD has been demonstrated for ptychography² and several other coherent diffraction imaging methods³
- Now being used for beyond-DOF imaging⁴ (right)

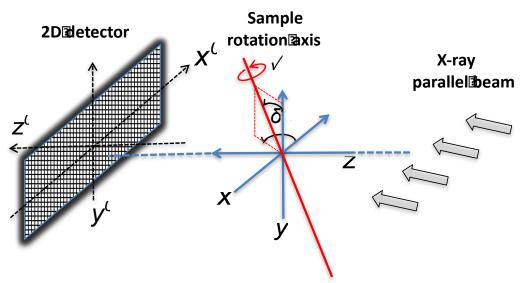


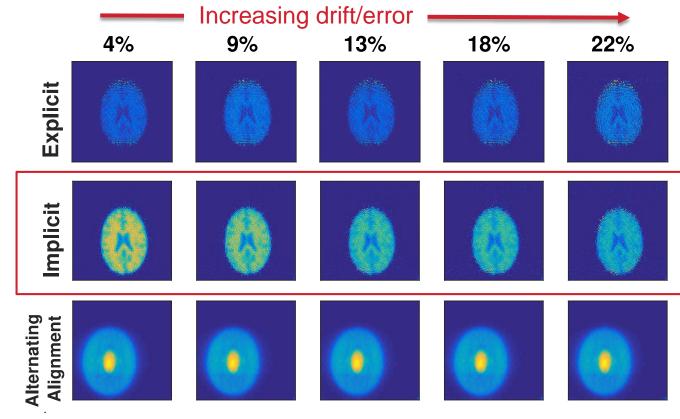
- 1. Gilles, Nashed, Du, Jacobsen, Wild, Optica 5, 2018
- 2. Nashed, Peterka, Deng, Jacobsen, Proc Comp Sci 108C, 2017
- 3. Kandel, Maddali, Allain, Hruszkewycz, Jacobsen, Nashed, Opt Exp 27, 2019
- 4. Du, Nashed, Kandel, Gursoy, and Jacobsen, Preprint 2019

Optimization-Based Sensing Error Recovery Automatically correcting experimental errors in tomography

Problem in tomographic imaging:

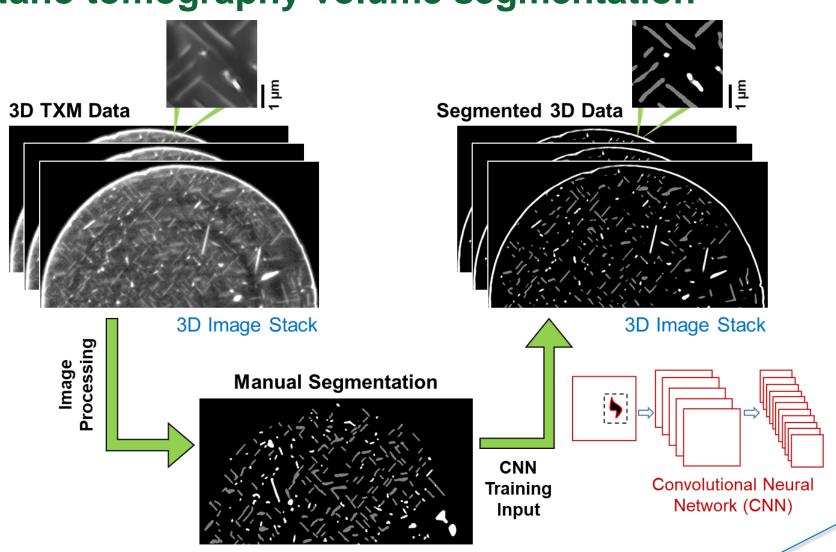
- Sample/center-of-rotation (CoR) drift
 Approach
- Embed CoR drift parameters in the nonlinear optimization problem of sample recovery
- Iteratively reconstruct sample and drift (implicitly and explicitly)





Austin, et al. SIAM J. Scientific Computing, 2019 Di, et al. IEEE ICIP, 2019

DL-Based Automatic Segmentation Nano tomography volume segmentation



Single slice

- Patch-based training on one slice to learn the unsupervised segmentation
- Deploy model from rapid segmentation on remaining slices

Xiaogang Yang (now DESY) talking Thursday @ 10:15

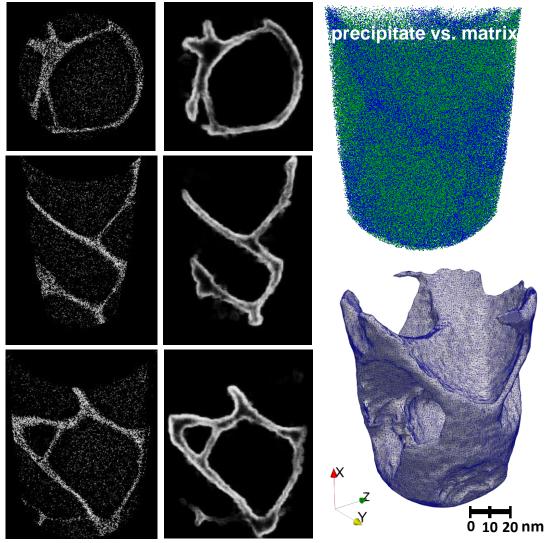
Phase Segmentation in Atom-Probe Tomography

Deep-learning-based edge detection

Transfer learning for segmentation:

- Transfer knowledge from common images

 (abundant labels) to segment data obtained from
 APT (scarce labels) into different phases
- Efficiently segments data phases & extracts interfacial properties without need for expensive interface labeling
- Segmentation done on 2D slices along 3 orthogonal directions; combined into 3D edge map of the interface delineating the 2 phases
- Uses holistically-nested edge detection (HED), based on CNNs with side outputs & deep supervision to significantly improve edge detection
- Demonstrated approach is qualitatively & quantitatively as accurate as proprietary solutions



2D & 3D edge maps learned from APT data of a Cobalt-based superalloy

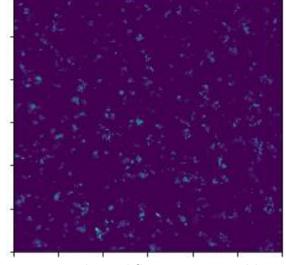
Multi-Element-Based Automatic Identification of

Aerosol Particles

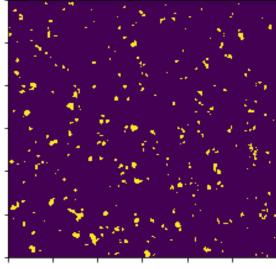
- Multi-element morphology-based learning method for particle identification
- Per-particle-based extraction of elemental concentration

In X-ray fluorescence imaging:

- Significantly reduces analysis time & human bias in comparing different particle samples
- Enables detailed, statistical characterization of observed atmospheric particles
- Provides critical constraints for earth system models representation of particle-related processes, including
 - iron chemistry in dust particles
 - morphological effects on aerosol optical properties
 - particle ice nucleation efficiency



Original: total fluorescence yield from all existing elements



Morphology-based identification of particles

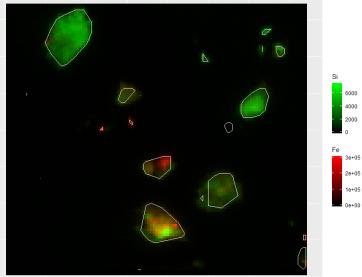


Figure 2: identified particle with different color representing different elemental concentration

Online Analysis of Streaming Experimental Data and

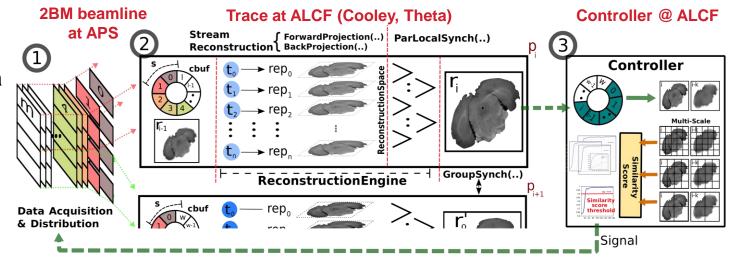
Autonomous Steering

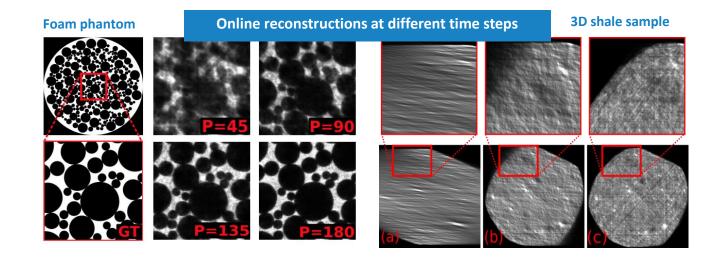
Online analysis

- Rethink the process of writing experimental data to disk --- stream directly to compute resources for online analysis
- Provides continuous feedback to beamlines while experimental data is captured
- Provides valuable information for timely decisions and real-time experimental steering

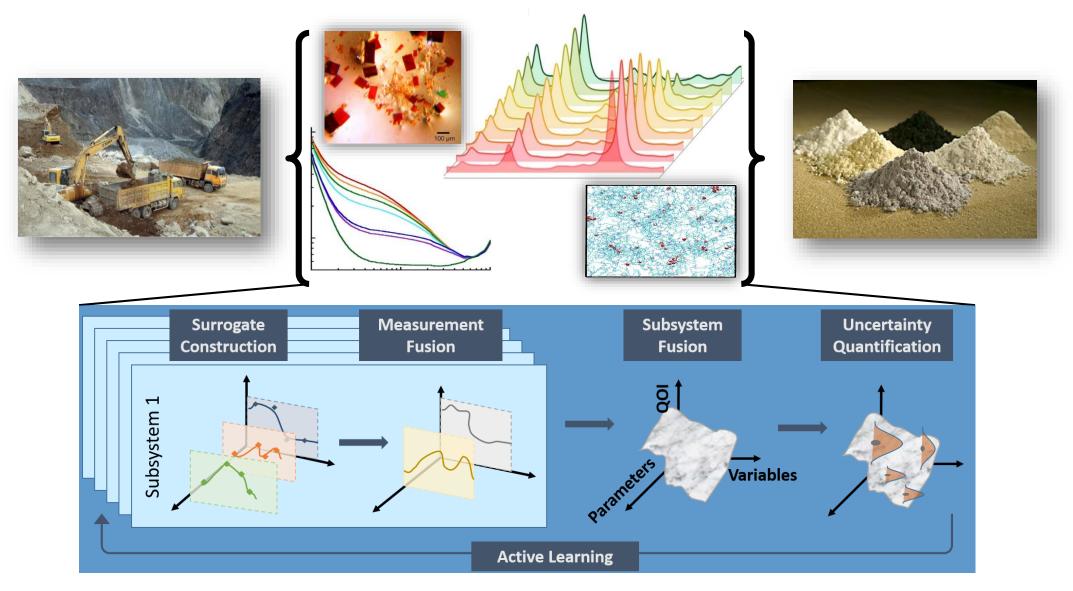
Link APS & ALCF for real-time analysis

- Trace scales to 10k+ cores and addresses high volume, high velocity data streams
- Evaluated performance at 2BM (microCT)
- Achieved >200 projections/s data consumption rate using 1200 cores of ALCF/Cooley
- Trace runtime system efficiency demonstrated on up to 32K cores at ALCF/Mira
- Feedback from multiple stages of analysis workflow can be observed



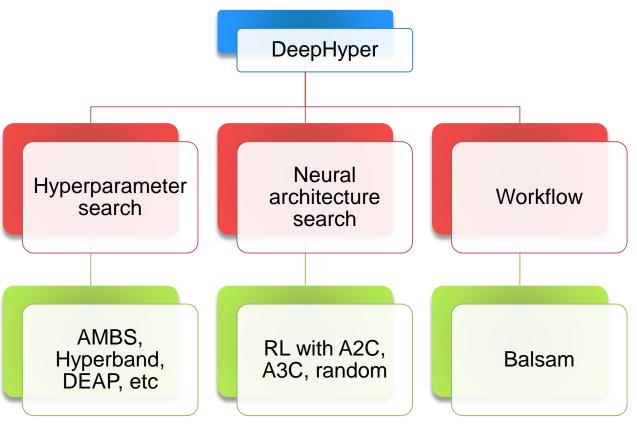


Closing the Loop: Chemical Separations by Design



Learning for Learning: Automating Neural Architecture Search for Deep Learning DeepHyper: A scalable AutoML package





https://github.com/deephyper

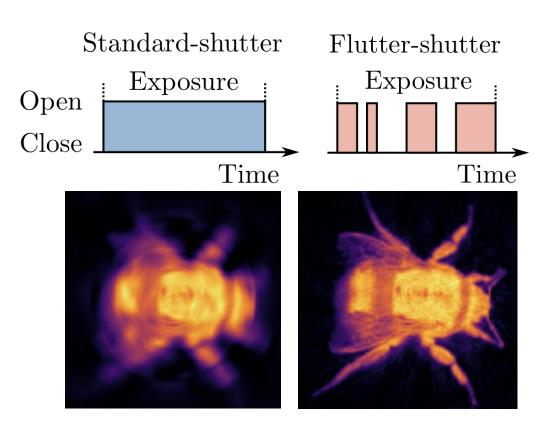
On CANDLE benchmark problems

	Trainable	Training		
	Parameters	Time (s)	R^2 or ACC	
Combo				
manually designed	13,772,001	705.26	0.926	
A3C-best	1,883,301	283.00	0.93	
Uno				
manually designed	19,274,001	164.94	0.649	
A3C-best	1,670,401	63.53	0.729	
NT3				
manually designed	96,777,878	247.63	0.986	
A3C-best	120,968	16.65	0.989	

Flutter-Shutter Computational Detector System for Imaging Dynamics

Detectors that can encode motion for high-speed applications

- Computational detector in which a shutter is used to control which photons reach the detector during each exposure
- Demonstrated improved time-resolutions for transmission x-ray computed tomography through simulations
- Superior performance to conventional post-acquisition image deblurring and applicable to fly-scan instruments or for high-speed radiography



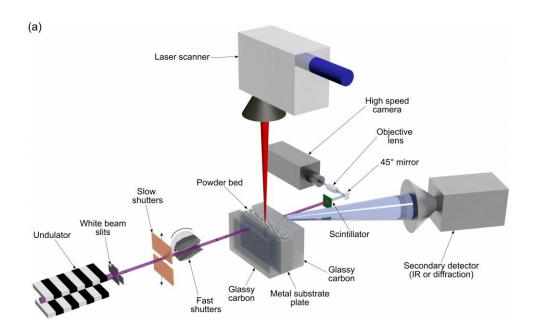
Tomographic reconstruction of a bumble bee without (left) and with (right) the known shutter code pattern incorporated in the computational process to compensate for rotational blur resulting from a 10X faster imaging rate

Additive Manufacturing Research at APS

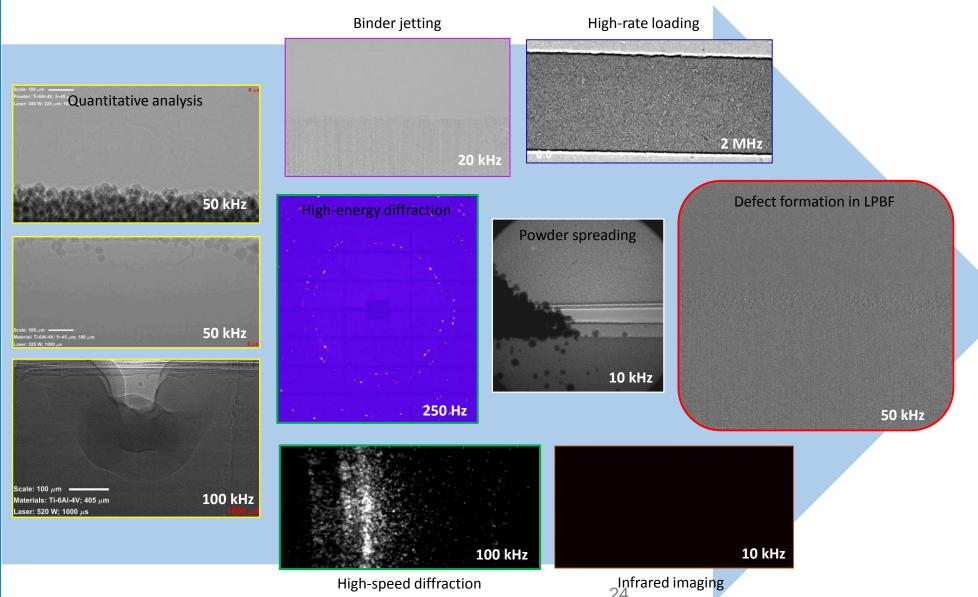
Address the critical issues in metal additive manufacturing

In situ/operando synchrotron x-ray experiments

- **Structure defects**
- Failure mechanisms
- High-fidelity models
- Reliability and Repeatability



Additive Manufacturing Research at APS



- Melt pool morphology
- Melt flow velocity
- Keyhole dynamics
- Spattering velocity
- Solidification rate
- Cooling rate
- Phase transformation rate
- Internal temperature distribution

The Future's So Bright...

Science enabled by intelligence in computing, data, & X-rays

Abundant opportunities for Al

- Process and analyze huge, complex, multimodal data volume & find rare events
- Accelerate discovery through optimal design of experiment (sample, acquisition, ...)
- Quantify correlations & uncertainties in high dimensions
- Real-time control & experimental steering

Requires multidisciplinary teams & advances on several simultaneous fronts

Argonne & APS Hiring ML+Imaging Postdocs http://bit.ly/2X9hU6P http://bit.ly/3380H2f

Thanks!

wild@anl.gov

