

Deep learning for small angle scattering under grazing incidence

W. Van Herck, J. Fisher, G. Pospelov, D. Yurov, N. Hoffmann, M. Ganeva

13th November 2019

MLZ is a cooperation between

Grazing-incidence small-angle scattering

morphological characterization technique in reciprocal space

Suitable to probe

- both, hard and soft matter
- rough interfaces
- supported or buried nanostructures

Benefits

- surface-sensitive, non-destructive technique
- large area coverage
- tunable depth probe by changing incident angle

Grazing-incidence small-angle scattering

challenges of the data analysis

- Multiple reflections at interfaces due to small incident angle.
- Simulation required for each step \Rightarrow time-consuming
- High dimensional vector of fit parameters

some data is impossible to fit!

Challenge 1

Walter Van Herck, Jonathan Fisher, Marina Ganeva

Predict orientational distributions for hexagonally arranged nanoparticles

GISAS on hexagonally arranged nanoparticles

Lattice rotation in reciprocal space

peak is observed only if the Ewald sphere intersects a lattice point

GISAS on hexagonally arranged nanoparticles

- Multiple domains with different orientations
- Orientational distribution is impossible to fit!

Solution: train deep neural network

Concerns	Solutions
no labeled experimental data	use simulated data
overfitting	variable simulation parameters
	data augmentation
	large amount of data (500K)
evaluation	validation data (simulated)

Chosen architecture: DenseNet169 (12.8M of parameters)

Model evaluation: learning curve

Prediction for validation data

Compare orientational distributions

Prediction for validation data

Compare simulated GISAS patterns

GISAS patterns look very similar

Partial least squares analysis

peaks: difficult to predict valleys: easier to predict

Analysis of possible bias

Prediction for uniform input orientational distribution

Prediction for experimental data 1,2

Expert scientist guess:

two angles of lattice rotation: $xi = 0^{\circ}$ and $xi = 30^{\circ}$ probabilities: $p(0^{\circ}) = 0.7$, $p(30^{\circ}) = 0.3$

¹Asmaa Qdemat, PhD Thesis (to be submitted) ²Li-Ming Wang, PhD Thesis (2018)

Prediction for experimental data

Comparison of predicted distributions

predictions for Experiments 2 and 3 similar to one for uniform

Prediction for experimental data

Properties of predicted distributions

Simple statistical analysis

- confirms hypothesis about similarity of distributions predicted for experiments 2 and 3 to one predicted for uniform
- rejects this hypothesis for experiment 1

\Rightarrow Experiments 2 and 3 have uniform rotational distribution

Prediction for experimental data: Experiment1

+ peak positions and relative intensities match well

- diffuse scattering is not fully reproduced

would uniform distribution perform better?

Prediction for experimental data: Experiment1

- relative intensities do not match
- diffuse scattering is overestimated
 - \Rightarrow DenseNet prediction performs better, than uniform

Prediction for experimental data: Experiment3

+ peak positions and relative intensities match well

+ DenseNet prediction better reproduces diffuse scattering

DenseNet gives better prediction!

What contributes to prediction?

Attention maps³ for Experiment 1

DenseNet pays attention to peaks!

³Attention maps created with *keras-vis* library: R. Kotikalapudi et. al., 2017, https://github.com/raghakot/keras-vis

Learning transfer: could we benefit?

Cartoon: https://medium.com/free-code-camp/asl-recognition-using-transfer-learning-918ba054c004

DenseNet 169 conv0 filters

Trained on GISAS data

Trained on ImageNet

Network learns different basic features

Challenge 2

G. Pospelov, D. Yurov, N. Hoffmann, M. Ganeva

Predict sample parameters for GISAS pattern

GISAS study of thin film growth

For understanding of film growth mechanism:

- + $10^4 10^5$ GISAXS patterns per experiment
 - experimental data are not labeled
 - ! fast feedback on thin film morphology needed

Learning transfer: could we benefit?

Experiments done at cluster of TU Dresden

Loss for pretrained network is smaller and decreases faster! To be continued..

Conclusion

Deep learning for GISAS

Challenge 1: predict orientational distribution

- + DenseNet 169 makes predictions with reasonable performance
- + Model trained with artificial data works also for experimental GISAS patterns
 - ! We need more experimental data from different instruments to test the model

Challenge 2: extract thin film parameters

- Loss for pretrained networks decreases faster and is lower
- The work is in progress

DNN makes prediction in microseconds

Acknowledgments

Data provided for model testing:

- A. Qdemat, E.Kentzinger (Experiments 1 and 2)
- L.-M. Wang (Experiment 3)
- F. Löhrer (film growth)

Access to GPU cluster:

- TU Dresden
- Organizers of Dresden Deep Learning hackathon

All simulations have been done with BornAgain (bornagainproject.org)

Thank you for your attention!