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Grazing-incidence small-angle scattering
morphological characterization technique in reciprocal space

Suitable to probe

both, hard and soft matter

rough interfaces

supported or buried
nanostructures

Benefits

surface-sensitive,
non-destructive technique

large area coverage

tunable depth probe by
changing incident angle
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Grazing-incidence small-angle scattering
challenges of the data analysis

Multiple reflections at interfaces due to small incident angle.

Simulation required for each step ⇒ time-consuming

High dimensional vector of fit parameters

some data is impossible to fit!
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Challenge 1
Walter Van Herck, Jonathan Fisher, Marina Ganeva

Predict orientational distributions

for hexagonally arranged nanoparticles
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GISAS on hexagonally arranged nanoparticles
Lattice rotation in reciprocal space

peak is observed only if the Ewald sphere intersects a lattice point
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GISAS on hexagonally arranged nanoparticles

Multiple domains with different orientations

Orientational distribution is impossible to fit!

M. Ganeva et. al. | Deep learning for small angle scattering under grazing incidence, Grenoble, 2019 6



Solution: train deep neural network

Concerns Solutions
no labeled experimental data use simulated data

variable simulation parameters
overfitting data augmentation

large amount of data (500K)

evaluation validation data (simulated)

Chosen architecture: DenseNet169 (12.8M of parameters)
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Model evaluation: learning curve

no overfitting, no exploding gradients
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Prediction for validation data
Compare orientational distributions
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Prediction for validation data
Compare simulated GISAS patterns

GISAS patterns look very similar
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Partial least squares analysis

peaks: difficult to predict
valleys: easier to predict
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Analysis of possible bias
Prediction for uniform input orientational distribution

Prediction is noisy, but tends to 5 angles
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Prediction for experimental data 1, 2

Expert scientist guess:

two angles of lattice rotation: xi = 0◦ and xi = 30◦

probabilities: p(0◦) = 0.7, p(30◦) = 0.3

1Asmaa Qdemat, PhD Thesis (to be submitted)
2Li-Ming Wang, PhD Thesis (2018)
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Prediction for experimental data
Comparison of predicted distributions

predictions for Experiments 2 and 3 similar to one for uniform
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Prediction for experimental data
Properties of predicted distributions

Simple statistical analysis

confirms hypothesis about similarity of distributions predicted
for experiments 2 and 3 to one predicted for uniform

rejects this hypothesis for experiment 1

⇒ Experiments 2 and 3 have uniform rotational distribution
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Prediction for experimental data: Experiment1

+ peak positions and relative intensities match well

− diffuse scattering is not fully reproduced

would uniform distribution perform better?
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Prediction for experimental data: Experiment1
DenseNet prediction vs. uniform distribution

− relative intensities do not match

− diffuse scattering is overestimated

⇒ DenseNet prediction performs better, than uniform
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Prediction for experimental data: Experiment3

+ peak positions and relative intensities match well

+ DenseNet prediction better reproduces diffuse scattering

DenseNet gives better prediction!
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What contributes to prediction?
Attention maps3 for Experiment 1

DenseNet pays attention to peaks!

3Attention maps created with keras-vis library: R. Kotikalapudi et. al.,
2017, https://github.com/raghakot/keras-vis
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Learning transfer: could we benefit?

Cartoon: https://medium.com/free-code-camp/asl-recognition-using-transfer-learning-918ba054c004
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DenseNet 169 conv0 filters

Trained on GISAS data Trained on ImageNet

Network learns different basic features
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Challenge 2
G. Pospelov, D. Yurov, N. Hoffmann, M. Ganeva

Predict sample parameters for GISAS pattern
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GISAS study of thin film growth
New: started in September 2019

For understanding of film growth mechanism:

+ 104 − 105 GISAXS patterns per experiment

- experimental data are not labeled

! fast feedback on thin film morphology needed
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Learning transfer: could we benefit?
Experiments done at cluster of TU Dresden

Loss for pretrained network is smaller and decreases faster!

To be continued..

M. Ganeva et. al. | Deep learning for small angle scattering under grazing incidence, Grenoble, 2019 24



Conclusion
Deep learning for GISAS

Challenge 1: predict orientational distribution

+ DenseNet 169 makes predictions with reasonable performance

+ Model trained with artificial data works also for experimental
GISAS patterns

! We need more experimental data from different instruments
to test the model

Challenge 2: extract thin film parameters

Loss for pretrained networks decreases faster and is lower

The work is in progress

DNN makes prediction in microseconds
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Thank you
for your attention!
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