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ANALYSING AND UNDERSTANDING INELASTIC
NEUTRON SCATTERING WITH DEEP LEARNING
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Applications of Neutron Scattering in Catalysis
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Nature Communications volume 8, Article number: 235 (2017)


https://www.nature.com/ncomms
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SOLVING LINEAR SPIN WAVE THEORY: SPIN-W
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linear spin wave p I n
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Journal of Physics: Condensed Matter, Volume 27, Number 16 (0 1. q)



https://iopscience.iop.org/journal/0953-8984
https://iopscience.iop.org/volume/0953-8984/27
https://iopscience.iop.org/issue/0953-8984/27/16
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Two-magnon excitations observed by neutron scattering in the
two-dimensional spin-2 Heisenberg antiferromagnet Rba Mn Fy

T. Huberman, R. Coldea, R. A. Cowley, D. A. Tennant, R. L. Leheny, R. J. Christianson, and C. D. Frost
Phys. Rev. B 72, 014413 - Published 6 July 2005
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Literature values:

e J; = 0.657 + 0.002
e J» = 0.006 + 0.003 J1 = 0.676

o Jo = 0.014

e J) =0.673 +£0.028
e J» =0.012 +0.002
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Ground State in a Half-Doped Manganite Distinguished by Neutron

. E. Johnstone, T. G. Perring, O. Sikora, D. Prabhakaran, and A. T. Boothroyd
Phys. Rev. Lett. 109, 237202 - Published 3 December 2012
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CAN WE FIND THE RIGHT DATA TO DISCRIMINATE

@t ¢+ t V@ Sampled data
Finding the right

 § signal can be a

. needle in a
haystack

(0,k) (r. I. u.)
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PCSMO THE DATA

» Significantly messier
dataset

» Noisy experimental
data

» Multiple bands

» Presence of phonons
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» In Rb2MnF4 we could
integrate across the
energy spectrum

Integrated energy (meV)

» In PCSMO this would
lead to loss of
information

» Develop an image with
Interactions across
energy slices
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[conv_outputs, preaictigns] - get_output(ftest_
conv_outputs = conv_outputs[0, :, :, :]
maxval np.argmax(np.array(predictions))

- rude o~ amrn e d LA A mearmma~s T errra ]




Science and

Technology
Facilities Council

PCSMO THE DATA PART Ill : “NOISE™

» There is a large
contribution from the
phonon spectrum

» This can obfuscate the
magnon spectrum

» Would like to remove this if
possible
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PCMS0 RESULTS |1: EXPERIMENTAL DATA

» Failure - noise :(

ylist = np.linspace(0, dim[0]*2,
X, Y = np.meshgrid(xlist, ylist)
## Add Gaussian smoothening to co
sigma = 0.2 # this depends on how
camg = gaussian filter(cam, sigma)

T

Prediction Dimer
[[8.2898813e-01 4.3244651e-08]]
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PCSMO: REMOVING THE NOISE (AUTOENCODERS)
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» Can we remove the experimental ‘noise’

» Noise = instrument noise + other signals

» We can try to use a denoising auto encoder
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PCSMO RESULTS 11l: AUTOENCODER + DISCRIMINATION

» (Qualified) Success :)

40.40 - 45.20 45.20 - 50.00
[

X, Y = np.meshgrid(xlist, ylist)
## Add Gaussian smoothening to c«
sigma = 0.2 # this depends on ho
camg = gaussian filter(cam, sigmj

N ) I ) IFAVER R

Prediction Goodenough
[[0.00203549 0.90476966]]
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MAKING MODELS INTERPRETABLE

Model Interpretability
performance use
D
Sub-human .ebug ane
improve
Increase

Human :
confidence

Learn from
Super-human
SuUCCesss
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CLASS ACTIVATION MAPS

» Show which regions of an input are responsible for
classification

Brushing teeth
Bl

arXiv:1512.04150v1



https://arxiv.org/abs/1512.04150v1
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» Global average pooling
» Apply to final convolutional layer

arXiv:1512.04150v1
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CAM HOW IT WORKS

Filter (fk)

==ka y) Se =) Y wifi(z,y)
k

Global averages

e -

Classes

000
k
B

Upsample CAM to original image
size

Directly indicates the importance
of a location (x, y) to the class
activation Sec.
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INTERPRETABLE MODELS FOR NEUTRON SCATTERING

Soft Nax

Build a model
discrimination
network - ask it
WHY it makes the

choice.
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INTERPRETABLE MODELS FOR NEUTRON SCATTERING

6.80 - 11.60 11.60 - 16.40 16.40 - 21.20 40.40 - 45.20 45.20 - 50.00

The network identifies the
same regions of E/Q
space as a trained

physicist.

Intensity

(0K) (r. 1. u.)

Could, in future, guide
experiments of the same

type.

0 051 -1-05 0051 -1-05 0 05 1 -1-0.5 0 0.5 1
(h,0) (r. 1. u.)
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SUMMARY

» Inelastic neutron scattering requires complex data analysis
to extract useful information

» Combining physics simulations with deep neural networks
can help in interpreting experimental spectra

» Understanding how neural networks arrive at answers is
generally a good ideal

» Understanding network results can provide guidance on
how to sample experimental space
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THANK YOU

"When we apply for funding it's Al, when we
hire it's machine learning and when we do
the work it's logistic regression”

Anon - Twitter wisdom

keeeto.github.io

. @keeet?ZOOO www.scd.stfc.ac.uk/
@ml_sci Pages/Scientific-

Machine-Learning.aspx




