Convolutional Neural Networks for DESY Photon Science

Philipp Heuser, DESY-IT 12/11/2019 Artificial Intelligence applied to Photon and Neutron Science - Grenoble

ML/DL @ DESY (campus) photon science

CFEL / European XFEL / DESY

Number of projects for classification of diffraction data; Hit/No hit? Good hit? Double hit?

Petra III

Xiaogang Yang, Thu 10:15; Deep learning for Synchrotron X-ray Imaging

EMBL

Daniel Franke, Tue 15:15; Machine learning applications for Small Angle X-ray Scattering data collection and analysis at EMBL-Hamburg

Machine Control Group

Helmholtz Zentrum Geesthacht (HZG) / DESY-IT

Segmentation of 3D synchrotron radiation micro-computed tomography (SRµCT)

CSSB / DESY-IT

ML/DL for cryo electron microscopy/tomography

DESY-IT

Monthly seminars/lectures on ML Round table events

Projects

Helmholtz Zentrum Geesthacht (HZG) / DESY-IT Segmentation of X-ray tomography data

200 400 100

CSSB / DESY-IT Object Detection for Cryo Electron Tomography

Automated Volumetric Interpretation

Philipp Heuser, DESY-IT, Scientific Computing Julian Moosmann, Helmholtz Zentrum Geesthacht, HZG

Semantic segmentation of bone implants (HZG)

Certain bone implants will be absorbed over time. Investigating the physiological processes over time by Xray tomography requires an accurate segmentation of a significant number of comparably large volumetric datasets.

Segmentation U-Net

Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. *arXiv:1505.04597* (2015).

Weak ground truth

Segmentation

Trained on ~ 100,000 images

DESY.

Training with weak ground truth

retrain final model

Automated Volumetric Interpretation

Trained on ~15,942 images from 11 3D datasets Each image 5 times **augmented**, yielding 95,652 images for training Training for 15 epochs using central 600 pixels takes 7 days using one V100 GPU (Keras)

Inference on Test-Sets (not used for training), yields very high accuracy

Segments

DESY.

Final Segmentation (Mg5GD)

Segmentation Mg5Gd

Segmentation Mg10Gd

Open Postdoc Position in this project in Hamburg @ HZG (julian.moosmann@hzg.de)

Object Detection for Cryo Electron Tomography

Finding Type III Secretion System (T3SS) in minicells for subtomogram averaging

Hu et al., 2017

Object detection

Philipp Heuser, DESY-IT, Scientific Computing Thomas Marlovits, Sean Miletic, CSSB

Finding T3SS in EM tomography for subtomogram averaging

Object detection

How to detect a few tiny objects

- get 50x50 px subsamples from images, with stride 1
- Assign lable to each patch
- \rightarrow Image Classification task

LeNet-5 (1998) for classification

Yann LeCun, et al.

- pioneering 7-level convolutional network by LeCun et al in 1998,
- classifies digits, was applied by several banks to recognise hand-written numbers on checks digitized in 32x32 pixel greyscale images.

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. *Proceedings of the IEEE* **86**, 2278–2324 (1998).

Challenge

Few true answers vs. lots of false answers

Segmentation

U-Net

Manually corrected 12 particularly bad predictions

re-trained with 30 2D images

Applied to 4 3D volumes; corrected and added all falsely predicted and some randomly selected images to training data (509 2D images)

Final trained U-Net

T3SS found!

Searching only within the membrane

T3SS candidates

TP/FP

Ground truth?

Currently we have about the same number of FP as TP.

FP TP

Conclusions/Outlook

- Good results even with 'classic' networks
- Quality of ground truth crucial
- Even though, prediction by CNN can be better than training annotation
- Screws:
 - Generation of more training data from different materials and from other synchrotron
 → Final training
- Cryo ET for T3SS:
 - Better ground truth, new detector, full cells
 - 3D CNNs

Acknowledgments Thanks to...

DESY-IT Frank Schlünzen

Thomas Marlovits Sean Miletic Wolfgang Lugmayr

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

Julian Moosmann Diana Krüger

HELMHOLTZ Analytics Framework

Funding: Helmholtz Association Initiative and Networking Fund project number ZT-I-0003