

Hybrid Photon Counting (HPC) detectors ... a journey...

Dubravka Šišak Jung 18th of October 2022

> DECTRIS Ltd. 5405 Baden-Dättwil Switzerland www.dectris.com

20 years and counting¹

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment Volume 477, Issues 1–3, 21 January 2002, Pages 531-535

A pixel detector for the protein crystallography beamline at the SLS

[1] Förster, A. et al. (2019) Phil.Trans.R.Soc.A377: 20180241. http://dx.doi.org/10.1098/rsta.2018.0241

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH NORMAN MARKEN M

Looking back, glancing sideways, detecting the future

- **1.** Detector basics
- 2. Hybrid Photon Counting (HPC) detectors
- 3. Future challenges

Detector basics: evolution... and revolution

Roland Horisberger fitting one of the final pieces of the CMS pixel detector at LHC (10 September 2008). (Photo: ETH Zurich / H.R. Bramaz; source ETH Zürich)

1. Performance

– Technical specs: bigger, better, faster

2. Simplicity of the design

- Understanding and controling the processes in the system
- Fewer sources of errors

3. Accessibility

- Stability, robustness
- Maintenance
- Ease of use

Detector basics: architecture & performance parameters

Dynamic range

[1] Donath, T. et al. (2022) in submission

5 | ADD 2022

18.10.22

[1] Brönnimann, C, Trüb, P. (2018) Synchrotron Light Sources and Free-electron Lasers. pp. 995–1027

6 | ADD 2022

Hybrid design: Sensor

Hybrid design: Readout

Simplified scheme of a readout chip.

Hybrid design: large-area detectors

Single photon counting¹ operation

[1] Brönnimann, C, Trüb, P. (2018) Synchrotron Light Sources and Free-electron Lasers. pp. 995–1027

Single photon counting operation: Adjustable energy threshold

Pixel Weighting Function normalized to maximum

t

Single photon counting operation: Two energy thresholds

Pixel Weighting Function normalized to maximum

Pixel Weighting Function normalized to maximum

Hybrid design + single photon counting = Hybrid Photon Counting detectors¹ "A revolution"

[1] Brönnimann, C, Trüb, P. (2018) Synchrotron Light Sources and Free-electron Lasers. pp. 995–1027

13 | ADD 2022

(1) Evolution of HPC detectors: bigger, better, faster

1. Not all HPC detectors are the same

- Different producers, different technical specs
- 2. If you encounter two detectors with the similar name, they are not necessarily the same
 - Different product lines, different specifications
 - Different generations of detectors
- 3. Two detectors with the exactly same name can also be different
 - Calibrations, firmware (updates)

Rather relevant for setting the exposure time correctly.

Sensor thickness and energy range

Relevant for expectation management. Example only! Please do not refer to data in the table as general values.

detecting the future

HPC: correlation size-speed

Some implementations are specific to detectors at certain beamlines.

Correlation size-speed-dynamic range

1000 Hz at 24-bit dynamic range

Older detectors might have different correlations between the size and speed.

[1] Loelliger et al. (2013) IEEE Science Symposium NSS/MIC, N6-2, 610-615.

19 | ADD 2022

(2) Doing things with HPC detectors: accessibility and ease of use

Experiments -> trying out things

Measurements -> using a set up procedure

- 1. Some things are implemented for convenience
- 2. Some things you have to think about :)

Corrections

- 1. Energy calibrations
- 2. Geometrical corrections
- 3. Count rate corrections
- 4. Experiment-specific corrections
 - Parallax correction¹
 - Geometry corrections^{2,3}
 - Other⁴

¹Pauw, B.R. et al. (2018) J. Appl. Cryst. **50**, 1800-1811.

²Krause, L. et al. (2020) J. Appl. Cryst. 53(3) 635-49.

³Wright, J. *et al.* (2022) *Crystals* **12**, 255.

⁴Kato, K. et al. (2019) J. Synchrotron Rad. 26, 762-773.

(3) Some practical advice

Trust your beamline scientist, but make sure to understand your experiment or measurement.

Use the detector within its specifications.

Sensor, counting and statistics

- Type and thickness of detector sensor vs. chosen X-ray energy
- Adjust exposure time accordingly!
- For CdTe detectors, exposure times in the range of couple of seconds are usually sufficient (at synchrotron beamlines)
- Your data statistics are limited by the number of count collected, as well as by the number of counts used for the flat file

Energy threshold

- Is adjustable and it can used for sample fluorescence suppression
- Significant change of the energy threshold might require a custom flatfield file
- Energy threshold has a certain resolution -> do not set it too close to the energy of the incoming photons

detecting the future

Unusual data

- Check if all necessary corrections were switched on (or have proper values set)
- Some wrong settings can be corrected post-experiment

Look into the future

(1) Evolution of HPC detectors -> EIGER2 update (Max, Friday)

(2) Data:

What we learned fro macromolecular crystallography

- Standardisations
- High throughput

Doing the right thing and doing it right

- Accuracy and reproducibility

=> Data, meta-data, standards (processes, workflows)

THANK YOU FOR YOUR ATTENTION

Dubravka.sisak@dectris.com

