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Using Generative Adversarial Networks to match
experimental and simulated inelastic neutron
scattering data
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During the past decades, research in materials science has been accelerated by the rapid development of syn-
chrotron and neutron sources.1 Conventional data analysis approaches using minimization techniques, such
as least-squares fitting algorithms, cannot keep up with the amount of increasing size of measured datasets.
Consequently, data analysis is becoming a bottleneck for research in materials science.2, 3 Therefore, it is of
great importance to improve the current state-of-art for data analysis for materials science, particularly utiliz-
ing recent developments in artificial intelligence and machine learning (ML).2-4 One of the unsolved problems
in this context is to match the simulated datasets that the ML algorithms are trained on to the experimental
datasets. This has particularly been a problem for the analysis of inelastic neutron scattering (INS), where
it is computationally expensive to ensure that simulated data correctly mimics the experimental signal and
background.5 In our project, we are attempting to improve this state through better ML for helping us effec-
tively analyse neutron datasets. More specifically, we are developing generative adversarial networks (GANs)
that can learn to make simulated INS data that matches experimental INS dataset under a second. This GAN-
based approach, once trained, will be deployed in a range of scenarios for analysing and understanding INS
dataset. It can be used to help classify materials structures from the INS datasets and to work with other ML
and non-ML (e.g. Spin-W6) algorithms which can estimate magnetic Hamiltonian parameters from INS data.
Furthermore, the aim is to expand the algorithm to also match simulated and experimental datasets for other
techniques than INS.
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