

Instruments development and testing for the Solar Orbiter mission

Anne Pacros, ATHENA Science Instruments Module Study Manager, former Solar Orbiter Mission and Payload Manager

ESI 2021 – EIRO Forum school on instrumentation – 08/06/2021

Outline

- ☐ The Solar Orbiter mission
- ☐ The payload complement
- Development constraints
- ☐ Environmental testing

Solar Orbiter science objectives

esa

- Exploring the Sun-Heliosphere Connection
- ☐ First medium-class mission of ESA's Cosmic Vision 2015-2025 programme, implemented jointly with NASA
- Dedicated payload of 10 remote-sensing and in-situ instruments measuring from the photosphere into the solar wind

Overarching Science Question:

How does the Sun create and control the Heliosphere– and why does solar activity change with time?

Science objectives

- □Solar Orbiter addresses central questions concerning our Sun:
 - How does the Sun create and control the heliosphere?
 - What drives the solar wind?
 - Why does solar activity change over time?
- □ Closest approach 0.28 AU (42 million km within the orbit of Mercury) closest-ever images and following features at the surface
- Later in the mission, orbit change to a highly inclined orbit (up to 32° of solar latitude) first images of the poles
- Unique combination of in-situ and remote-sensing instruments correlate what we see and what we measure

Past solar and heliospheric missions

Concept of operations

- Nominally sun pointing, with possibility to point at the limb for off-limb observations
- Telemetry-constrained
 - In-situ data continuously acquired
 - Remote-sensing operations planned in three 10day Remote Sensing Windows per orbit
 - Planning cycles (long-term to very-short-term)
 - Inter-instrument communication capability on board

Definition of the payload complement

Solar Orbiter is a mission designed to observe the Sun and the heliosphere, and link heliospheric phenomena back to their sources on the Sun.

- □ In-situ measurements of the solar wind plasma, fields, waves (SWA, MAG, RPW) and energetic particles (EPD)
- □ Remote-sensing measurements
 - Simultaneous high-resolution images and spectra (EUI, SPICE, PHI)
 - Vector magnetic field of solar photosphere (PHI)
 - > Full-disk imaging in visible, UV, X-rays (PHI, EUI, STIX)
 - ➤ Coronal imaging (METIS, SoloHI)

The Solar Orbiter Instruments

In-Situ Instruments				
EPD	Energetic Particle Detector	J. Rodríguez- Pacheco	- ili	Composition, timing and distribution functions of energetic particles
MAG	Magnetometer	T. Horbury		High-precision measurements of the heliospheric magnetic field
RPW	Radio & Plasma Waves	M. Maksimovic		Electromagnetic and electrostatic waves, magnetic and electric fields at high time resolution
SWA	Solar Wind Analyser	C. Owen		Sampling protons, electrons and heavy ions in the solar wind
Remote-Sensing Instruments				
EUI	Extreme Ultraviolet Imager	P. Rochus		High-resolution and full-disk (E)UV imaging of the on- disk corona
METIS	Coronagraph	M. Romoli		Visible and UV Imaging of the off-disk corona
PHI	Polarimetric & Helioseismic Imager	S. Solanki		High-resolution vector magnetic field, line-of-sight velocity in photosphere, visible imaging
SoloHI	Heliospheric Imager	R. Howard		Wide-field visible imaging of the solar off-disk corona
SPICE	Spectral Imaging of the Coronal Environment	ESA facility instrument	@ esa	EUV imaging spectroscopy of the solar disk and near- Sun corona
STIX	Spectrometer/Telescope for Imaging X-rays	S. Krucker	+	Imaging spectroscopy of solar X-ray emission

Spacecraft overview

Instruments accommodation

Development constraints (1/2)

Accommodation constraints:

- ☐ Mass: 210kg for the whole payload complement
- Power: 245W for the whole payload complement
- ☐ Data: constraints on data rate, on data storage and on data downlink
- ☐ EMC: constraints on emission (conducted and radiated) and charging
- ☐ Cleanliness (molecular and particulate): constraints on materials selection

SPICE high-resolution imaging spectrometer at extreme ultraviolet (EUV) wavelengths: 25 kg, 30 W

SWA-EAS: Electron analyser <6 kg 11W (+heating power)

SWA-PAS: Proton-Alpha sensor <5kg 5 W (+heating power)

Development constraints (2/2)

@esa

Examples of conflicting requirements:

- ☐ In-Situ versus Remote-Sensing instruments
 - > In-situ instruments needs magnetic cleanliness and stringent requirements on surface charging;
 - ➤ Remote-Sensing instruments generally use mechanisms and need fine pointing (→ reaction wheels); they have non-conductive optical elements and coatings...
 - > Possible Solutions: careful choice of motors, magnetic shielding, special coatings development
- Verification of single point failure elements by test, versus cleanliness (e.g. SoloHI and METIS instruments on Solar Orbiter)
 - > Protective doors used to protect sensitive surfaces from molecular and particulate contamination
 - Possible Solution: plan for tests in "clean tents"

Environmental testing

- □The goal of the environmental tests is to submit the units to the mechanical and thermal loads that will be experienced during launch and in orbit:
- ➤ Sine vibration
- **≻**Acoustic
- >Shock
- ➤ Thermal vacuum
- ☐ The tests are done at unit (instrument) level, then at system (spacecraft) level.
- ☐ There are qualification tests (e.g. on Structural and Thermal model) and acceptance tests (on the Flight model)

©ESA-Corvaja, (credit Airbus/IABG), at IABG space test centre

© IABG, ready for vibro-acoustic test (credit ESA/Airbus/IABG)

Thermal tests in high vacuum:

- Sun simulation
- Temperature changes (cycles)

© IABG, SolO in TVTB chamber (credit ESA/Airbus/IABG)

Other testing

- □ Deployment tests
- □ Electromagnetic Compatibility (EMC)
- ☐ Magnetics (depending on the mission)
- □ Functional verification

Our rocket: Atlas 5, version "411"

- 2 stages
- ☐ 1 booster
- ☐ Fairing of 4 meters diameter
- □ 58 m high in total
- □ Approximately 400 ton at the beginning! (while Solar Orbiter is just 1.8 ton)

-00:00:30

HOUR I

MINUTE

SECOND

Backup slides

Engineering challenges: thermal

☐ Heat shield:

- SolarBlack coating
- > 40 cm thick (high-T MLI, star brackets, low-T MLI)
- Surface temperature between -200° C and +520° C
- SORA radiators and thermal straps
 - Stand-off from main structure to limit TED
 - Pyrolitic graphite: very high conductivity (1 W/K) for very low structural stiffness

Engineering challenges: EMC, magnetic cleanliness and charging

- Specific design of electronic boards to minimize EMC emissions (and definition of EMC-quiet operations)
- Selection of non-magnetic materials
- Shielding of magnetic components
- ☐ Harness layout to avoid creating current loops
- Ensuring conductivity of all external surfaces

Engineering challenges: contamination control

□Stringent requirements on molecular contamination (UV instruments) and particulate contamination (coronograph and high-voltage instruments)

■Mitigations:

- Selection of low-outgassing materials and systematic bake-out
- Purge system with high purity nitrogen
- Monitoring during Spacecraft TVAC
- Heat shield doors (+Metis cap), instrument doors
- Regular inspections and cleaning
- Extensive modelling of in-flight molecular contamination
- In-flight measurements by the Contamination
 Monitoring System (CMS)

CMS-1 on front panel of SPICE

For more information and latest news

ESA general portal:

https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter

ESA science portal:

https://sci.esa.int/web/solar-orbiter

Solar orbiter's journey around the Sun: animation showing the orbital manoeuvres:

http://www.esa.int/spaceinvideos/Videos/2019/10/Solar_Orbiter_s_journey_around_the_Sun

Twitter: @ESASolarOrbiter