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Outline

 The Solar Orbiter mission
 The payload complement
 Development constraints
 Environmental testing
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Solar Orbiter science objectives

 Exploring the Sun-Heliosphere Connection
 First medium-class mission of ESA’s Cosmic Vision 

2015-2025 programme, implemented jointly with NASA
 Dedicated payload of 10 remote-sensing and in-situ 

instruments measuring from the photosphere into the 
solar wind

Overarching Science Question:
How does the Sun create and control the Heliosphere 
– and why does solar activity change with time?
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Science objectives
Solar Orbiter addresses central questions concerning our Sun:

 How does the Sun create and control the heliosphere?
 What drives the solar wind?
 Why does solar activity change over time?

 Closest approach 0.28 AU (42 million km – within the orbit of Mercury) – closest-ever images and 
following features at the surface

 Later in the mission, orbit change to a highly inclined orbit (up to 32° of solar latitude) – first images of the 
poles

 Unique combination of in-situ and remote-sensing instruments – correlate what we see and what we 
measure
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Past solar and heliospheric missions
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Concept of operations
 Nominally sun pointing, with possibility to point at the limb 

for off-limb observations

 Telemetry-constrained

 In-situ data continuously acquired
 Remote-sensing operations planned in three 10-

day Remote Sensing Windows per orbit
 Planning cycles (long-term to very-short-term)
 Inter-instrument communication capability on board
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Definition of the payload complement

Solar Orbiter is a mission designed to observe the Sun and the heliosphere, and link heliospheric
phenomena back to their sources on the Sun.

 In-situ measurements of the solar wind plasma, 
fields, waves (SWA, MAG, RPW) and energetic 
particles (EPD)

 Remote-sensing measurements
 Simultaneous high-resolution images and spectra (EUI, 

SPICE, PHI)
 Vector magnetic field of solar photosphere (PHI)
 Full-disk imaging in visible, UV, X-rays (PHI, EUI, STIX)
 Coronal imaging (METIS, SoloHI)
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The Solar Orbiter Instruments
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Spacecraft overview

Image credit: ESA/ATG MediaLab

Tiltable Solar Arrays

Heat Shield with 
Aperture Doors

High-Gain Antenna

Instrument Boom

RPW Antenna

Dry mass: ~1,500kg
Wet mass: ~1,750kg
Power (EoL, aphelion): 1,300W 
Earth link: ~2-27.4 Gbit/day
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Instruments accommodation
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Development constraints (1/2)
Accommodation constraints:

 Mass: 210kg for the whole payload complement
 Power: 245W for the whole payload complement
 Data: constraints on data rate, on data storage and on data downlink
 EMC: constraints on emission (conducted and radiated) and charging
 Cleanliness (molecular and particulate): constraints on materials selection
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SPICE high-resolution imaging 
spectrometer at extreme ultraviolet 
(EUV) wavelengths: 25 kg, 30 W
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SWA-EAS: Electron analyser
<6 kg
11W (+heating power)

SWA-PAS: Proton-Alpha sensor
<5kg
5 W (+heating power)
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Development constraints (2/2)
Examples of conflicting requirements:

 In-Situ versus Remote-Sensing instruments
 In-situ instruments needs magnetic cleanliness and stringent requirements on surface charging;
 Remote-Sensing instruments generally use mechanisms and need fine pointing ( reaction wheels); they have

non-conductive optical elements and coatings…
 Possible Solutions: careful choice of motors, magnetic shielding, special coatings development

 Verification of single point failure elements by test, versus cleanliness (e.g. SoloHI and METIS instruments
on Solar Orbiter)

 Protective doors used to protect sensitive surfaces from molecular and particulate contamination
 Possible Solution: plan for tests in “clean tents”
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Environmental testing
The goal of the environmental tests is to submit the units to the mechanical and thermal loads that will be 
experienced during launch and in orbit:
Sine vibration
Acoustic
Shock
Thermal vacuum

The tests are done at unit (instrument) level, then at system (spacecraft) level.

There are qualification tests (e.g. on Structural and Thermal model) and acceptance tests (on the Flight model)
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© IABG, ready for vibro-acoustic test (credit ESA/Airbus/IABG)

©ESA-Corvaja, (credit Airbus/IABG), 
at IABG space test centre
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Thermal tests in high vacuum:
 Sun simulation
 Temperature changes (cycles)

© IABG, SolO in TVTB chamber
(credit ESA/Airbus/IABG)
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Other testing
Deployment tests
Electromagnetic Compatibility (EMC)
Magnetics (depending on the mission)
Functional verification
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Our rocket: Atlas 5 , version “411”

 2 stages
 1 booster

 Fairing of 4 meters diameter
 58 m high in total
 Approximately 400 ton at the beginning! (while 
Solar Orbiter is just 1.8 ton)
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Backup slides
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Engineering challenges: thermal

Heat shield: 
 SolarBlack coating
 40 cm thick (high-T MLI, star brackets, low-T MLI)
 Surface temperature between -200°C and +520°C

 SORA radiators and thermal straps 
 Stand-off from main structure to limit TED
 Pyrolitic graphite: very high conductivity (1 W/K) for very low 

structural stiffness 
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Engineering challenges: EMC, magnetic cleanliness
and charging
 Specific design of electronic boards to minimize EMC 

emissions (and definition of EMC-quiet operations)
 Selection of non-magnetic materials
 Shielding of magnetic components 
 Harness layout to avoid creating current loops
 Ensuring conductivity of all external surfaces
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Engineering challenges: contamination control

Mitigations:
 Selection of low-outgassing materials and systematic 

bake-out
 Purge system with high purity nitrogen
 Monitoring during Spacecraft TVAC
 Heat shield doors (+Metis cap), instrument doors 
 Regular inspections and cleaning

 Extensive modelling of in-flight molecular 
contamination

 In-flight measurements by the Contamination 
Monitoring System (CMS)

CMS-1 on front panel of SPICE

Stringent requirements on molecular contamination (UV instruments) and particulate 
contamination (coronograph and high-voltage instruments)
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For more information and latest news
ESA general portal:
https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter
ESA science portal:
https://sci.esa.int/web/solar-orbiter

Solar orbiter’s journey around the Sun: animation showing the orbital manoeuvres:
http://www.esa.int/spaceinvideos/Videos/2019/10/Solar_Orbiter_s_journey_around_the_Sun

Twitter: @ESASolarOrbiter

https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter
https://sci.esa.int/web/solar-orbiter
http://www.esa.int/spaceinvideos/Videos/2019/10/Solar_Orbiter_s_journey_around_the_Sun
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