

Advanced Technology for Modern Radio Telescopes and some history

Gie Han Tan

7th EIROforum School on Instrumentation

__ || |_ |_ ;= +- || | **=** || || || __ __ **...** |0| **... ;=** |+ |; || ||

The radio spectrum

7th EIROforum School on Instrumentation

A condensed history of radio telescopes

Radio astronomy is a relatively young discipline in experimental astronomy but has seen a very rapid development

Karl Jansky (US) – 1932 detected radiation at 20.5 MHz from the Milky Way

Grote Reber (US) – 1937 9 m parabolic antenna Operating at 3.3 GHz / 900 MHz / 160 MHz Westerbork Synthesis Radio Telescope (WSRT) (NL) – 1970 14 X 25 m parabolic antenna Operating up to ~8.4 GHz

二 88 🛌 ::: +- 88 💳 88 88 二 🛶 🚳 📼 ::: 03 💥 🔛

A condensed history of radio telescopes

and continues to make technological progress.

Green Bank Telescope – 2000 100 m off-set parabolic antenna Operating up to ~116 GHz

Low Frequency Array (LOFAR) 2012 Phased array Operating range 10-250 MHz

Atacama Large Millimeter/submillimeter Array (ALMA) - 2013 54 x 12 m / 12 x 7 m Operating range 30-950 GHz

FAST Telescope – 2016 500 m spherical antenna Operating up to ~3 GHz

7th EIROforum School on Instrumentation

Outline

Key performance drivers for radio telescopes

- Sensitivity
- Angular resolution
- Frequency coverage
- Design examples of modern radio telescopes
 - Atacama Large Millimeter/submillimeter Array (ALMA)
- Some new receiver technologies
 - Phased array feeds
 - Aperture arrays
- Care about the EM environment
 - Radio Frequency Interference

Sensitivity

Sensitivity equation expressed in flux density S

$$\Delta S = \frac{S_{sys}}{\sqrt{B \cdot t}} \qquad \qquad S_{sys} = \frac{2 \cdot \eta \cdot k \cdot T_{sys}}{A_{eff}}$$

- ✓ Increased integration time t
- Increase collecting area A_{eff} (larger dishes / combining multiple dishes)
- Reduction of system noise sources T_{sys} (e.g. amplifiers, antenna spill over)
- Increase observing bandwidth B (only works for continuum sources, e.g. thermal radiation)

A sensitivity comparison

7th EIROforum School on Instrumentation

Angular resolution

 Antenna Half-Power Beam Width (HPBW) as a measure for angular resolution

$$\theta_{HPBW} = k \cdot \frac{\lambda}{D}$$

✓ Increase aperture size D

✓ Increase frequency → smaller λ

- Practical limits to increasing D
 - Aperture synthesis
 - WSRT (3 km), VLA (27 km), SKA Phase 1 (150 km)
 - Very Long Baseline Interferometry
 - < 100 > 300.000 km

Aperture Synthesis

- Spatial autocorrelation of field distribution in a pupil plane and its intensity distribution in an image plane are related by a Fourier transform
- The pupil plane is sampled by the individual antennas (Nyquist-Shannon sampling theorem)
- 1-D (e.g. WSRT) and 2-D (e.g. ALMA) arrays are being used
- Sampling points are enhanced by using earth rotation

This is the amplitude of the Fourier transform of an image of an typical Dutch object.

Angular resolution

• Very Long Baseline Interferometry

- Groundbased VLBI
 - European VLNI Network
 - 327 MHz 43 GHz
 - Resolution: 30 marcs 150 µarcs
 - Event Horizon Telescope
 - 230 / 450 GHz
 - Resolution: 10 µarcs (goal)
- Space VLBI
 - HALCA VSOP
 - 1997 2005
 - 8 m diameter reflector
 - Baseline 56 21.400 km
 - 1.6 GHz / 5 GHz / 22 GHz
 - Resolution: ~120 µarcs
 - Radioastron Spektr-R
 - 2011 current
 - 10 m diameter reflector
 - Baseline 10.000 339.000 km
 - 327 MHz / 1.6 GHz / 5 GHz / 22 GHz
 - Resolution: ~8 µarcs

antenna on the beginning of deployment in Lavochkin (2002)

= 818 km := ++ 818 **==** 818 818 == em 69 📼 **s=** 1+ %# 🛀

+<u>E</u>\$+ 0 +

The Event Horizon Telescope

First image of a black hole (see <u>ESO announcement</u>)

- Two VLBI arrays that link radio dishes across the globe
 - Global mm-VLBI Array observes at a wavelength of 3 mm
 - EHT observes at a wavelength of 1.3 mm
 - angular resolution (λ/d_p) of about 25 µarcs (equivalent to standing in New York and being able to read the date on a quarter in Los Angeles)

7th EIROforum School on Instrumentation

Angular resolution comparison

What is ALMA?

- The Atacama Large Millimeter/submillimeter Array a global endeavor to build an interferometric array of radio telescopes operating at wavelengths between 10 and 0.3 mm (30 to 950 GHz)
 - > 7000 m² collecting area (54 12-m \varnothing antennas & 12 7-m \varnothing antennas)
 - 5000-m altitude site in Chile
 - Reconfigurable antennas allowing baselines up to 14 km

The ALMA Partners

- Europe (ESO on behalf of its 16 member states)
- North America (NRAO representing US and Canada)
- East Asia (NAOJ representing Korea and Taiwan)

Geographical location of ALMA

Northern Chili / 2nd Region

Atacama desert

View of Northern Chile (NASA Space Shuttle) ESO PR Photo 24b/99 (8 June 1999) © ESO - ESA - Claude Nicollier

Llano de Chajnantor

Chajnantor plateau, elevation 5000+ m

7th EIROforum School on Instrumentation

ALMA baseline instrument

Key technical parameters:

- > 54 & 12 antennas:
 - 12 m / 7 m diameter, Cassegrain configuration
 - Surface accuracy: < 25 μ m rms / 12 m < 15 μ m rms / 7 m
 - Pointing accuracy: 0.6 arcsec (offset, 2 deg in position and 15 min time), 2.0 arcsec (absolute)
 - Nutating sub-reflector (4 antennas)
- > Zoom configuration:
 - Baseline length up to \approx 14 km
 - 192 antenna stations
 - All antennas fully reconfigurable over all antenna pads
- Front ends:
 - Dual polarisation
 - IF bandwidth: 8 GHz / polarisation
- > Correlator:
 - Number of baseband inputs: 8 / antenna
 - Maximum sampling rate per baseband input: 4 GHz
 - Digitising format: 3 bit 8 level
 - Correlation format: 2 bit 4 level

7th EIROforum School on Instrumentation

ALMA Front End key specifications

ALMA Band	Frequency Range	Receiver noise temperature		Mixing	Pacaivar
		T _{Rx} over 80% of the RF band *	T _{Rx} at any RF frequency *	scheme	technology
1	31.3 – 45 GHz	17 K	28 K	USB	HEMT
2	67 – 90 GHz	30 K	50 K	LSB	HEMT
3	84 – 116 GHz	37 K (40K)	62 K (50K)	2SB	SIS
4	125 – 169 GHz	51 K (45K)	85 K (55K)	2SB	SIS
5	163 - 211 GHz	65 K	108 K	2SB	SIS
6	211 – 275 GHz	83 K (45K)	138 K (60K)	2SB	SIS
7	275 – 373 GHz	147 K (80K)	221 K (90K)	2SB	SIS
8	385 – 500 GHz	196 K (160K)	294 K (270K)	2SB	SIS
9	602 – 720 GHz	175 K (100K)	263 K (150K)	DSB	SIS
10	787 – 950 GHz	230 K	345 K	DSB	SIS

* In brackets achieved noise temperature

Simplified ALMA block diagram

- Receiver systems:
 - Super heterodyne architecture
 - Dual frequency conversion (only single conversion shown)
- Optical transmission system: for digitised IF (~100 Gb/sec each antenna) and LO reference distribution
- The depicted system is located at the Array Operations Site at 5000+ m.
- Remotely controlled from the Operations Support Facility at ≈2800 m.

ALMA / Front End Assembly

Cryogenic (~ -270 deg. Celsius) receivers at each antenna

7th EIROforum School on Instrumentation

二 🖬 🛌 := 🕂 🛯 💻 🖉 🖉 💶 🖬 🖉 🚾 📰 🕂 💥 🛀

ALMA Band 9 Cartridge

4 + 110 K Stage Assembly (NOVA/SRON)

2nd Optics Assembly Integrated on 4K Plate

4-12 GHz Isolators

SIS Junction Lay Out (TUD)

Warm Cartridge Assembly (NRAO)

7th EIROforum School on Instrumentation

Cryo sub-mm Low Noise Amplifiers

- Ratio left / right y-axis is 1 / 5
 - > Demonstrated reduction in T_n when cooling LNA from room temperature to ~ 25 K (see e.g. Reck et al)

ALMA Correlator

Calculates visibilities (real time) from signals from all 66 antennas

Dedicated supercomputer with 134 million processors performing up to 17 quadrillion (17 000 000 000 000 000) operations per second

7th EIROforum School on Instrumentation

╤┇┇╞┝╍┇┇╪┿┇┇══┇┇┇┇┇═╴╍╸╔╝╺═┇╬╴╬╸╠╣

Multiple feeds in focal plane

Enlarging of FOV with multiple feed in focal plane

Under sampled focal plane $(d > \frac{1}{2} \Lambda)$ Focal plane arrays Mainly at (sub-)mm telescopes Densely sampled focal plane (d < $\frac{1}{2} \lambda$) Phased array feeds Focus at cm telescopes

PAF Development – CSIRO (AUS)

- Focussed on 650 1700 MHz
- Concepts demonstrated 5 x 4 array (40 Elements)

PAF Development - NRC (CA)

Thick Vivaldi element and LNA

PAF Development – ASTRON / JBCO

- PHAROS
 - Cryogenic receiver
 - MMIC 0.2-2GHz LNA (ASTRON)
 - Analog beamformer

Radio Frequency Interference

RFI is increasing threat to radio astronomy

Passive service

Global RFI map @ 1,4 GHz from NASA Acquarius

RFI from Satellite Constellations

Constellation (Registering Nation)	Altitude (km)	Number of satellites	
Starlink Generation 1 (US)	5,50	1,584	
Today: 1378	1,130 1,275 1,325	400 375 450	
Starlink Generation 2 (US)	1,525	430	
	328	7,178	
Pending approval	345	7,178	
	373	1,998	
	604	4,000	
	614	324	
OneWeb Phase 2	500	2,000	
(US, UK) Today: 128	1,200	2304 22.049	
Amazon Kuinor (US)	1,200	2304 23,040	
Allazon Rulper (03)	590	784	
	610 630	1,296	
Sat Revolution (Poland)	350	1,130	
CASC Hongyan (China)	1,100	320	
CASIC Xingyun Lucky Star (China) CommSat (China)	1,000	155 800	
Xinwei (China)	600	32	
Astrome lech (India) Boeing (US)	1,400	0	
LeoSat (Luxembourg)	1,423	0 108	
Samsung (Korea) Yaliny (Russia)	2,000	4,700	
Telesat LEO (Canada)	1,000	117	
Total		96,437	
COU-1928 report		~60 000	
bit.ly/ESOcou1928			

...planned telecom mega-constellations as of early 2021:

- ~30 (sub-) constellations
- ~100 000 satellites

As of today:

- ~1500 satellites in LEO constellations +2800 pre-existing satellites
- Not all constellations have filed application
- Boing + Leosat withdrew their application
- OneWeb bankrupted and revived
- OneWeb downscaled to 6300 sat

Total @2030: ~ 60 000 satellites

Caveat:

- Few filings end up in launches (~10%)
- MANY more non-telecom constellations have filed (but they are much smaller spacecrafts) (but but they still contribute to crowding)

7th EIROforum School on Instrumentation

二 🖬 🛌 := 🕂 🛯 = 🛯 🖉 🖬 🖉 = 🖬 🖾 📰 👬 🛀

Thank you!

7th EIROforum School on Instrumentation

ႍ ▋▌ ▶▖ \$2 ++ ▋ ▌ ▀ ▋ ▌ ▋ ▌ ႍ ▄▖ Ø▌ 至 \$2 \$4 \$# \$#