07th Eiroforum School on Instrumentation

Grenoble 07-11 June 2021



07TH EIROFORUM SCHOOL ON INSTRUMENTATION

ESRF

Photons and Instrumentation

On behalf of ISDD team

- ESRF

- EBS overview
- Instrumentation programme

ESRF

22 PARTNER COUNTRIES

	10
13 Member states:	
France	27.5 %
Germany	24.0 %
Italy	13.2 %
United Kingdom	10.5 %
Russia	6.0 %
Benesync	5.8 %
(Belgium, The Netherland	s)
Nordsync	5.0 %
(Denmark, Finland, Norwa	ay, Sweden)
Spain	4.0 %
Switzerland	4.0 %

9 Scientific Associate countries:				
Israel	1.75 %			
Austria	1.75 %			
Centralsync	1.05%			
(Czech Republic, Hungary, Slovakia)				
Poland	1.0 %			
Portugal	1.0 %			
India	0.66 %			
South Africa	0.3 %			

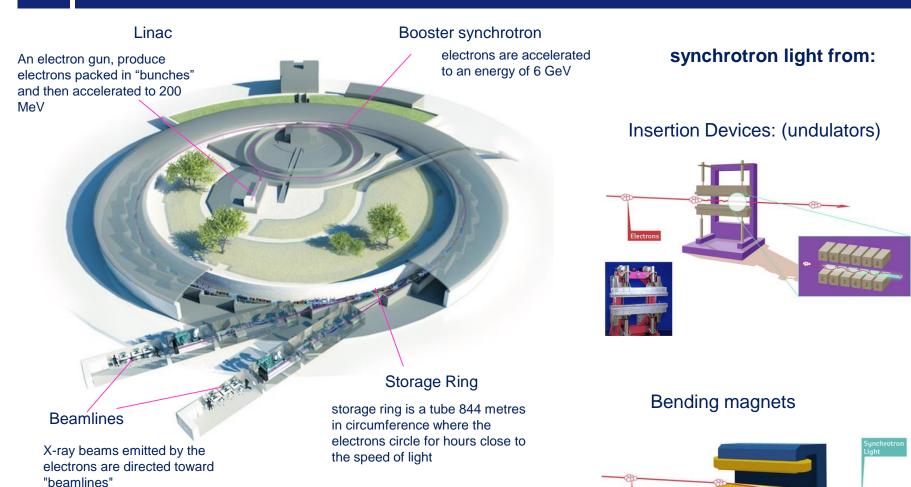
22 partner nations Annual budget: 100 million euros Staff: 630 of 40 different nationalities Legal status: Private civil company subject to French law

ESRF

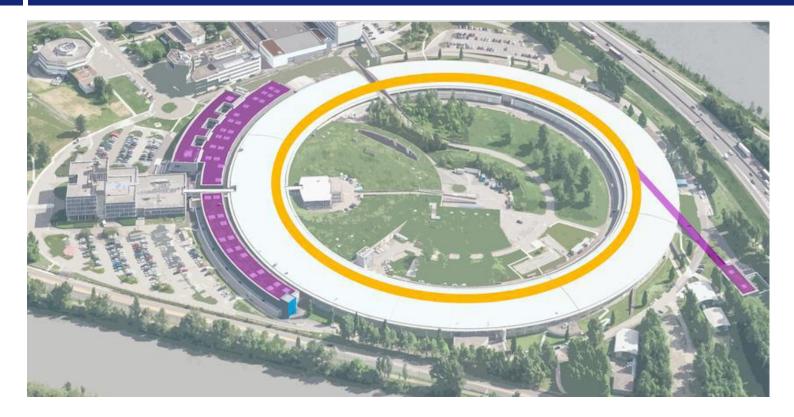
The ESRF produces the most intense synchrotron generated light in the world

A research facility unique worldwide

- ✓ 44 Beamlines
- ✓ 9 000 scientific visitors every year
- 2 000 proposals per year: 900 accepted, 1 550 experimental sessions
- ✓ 30% of the research involves industrial developments
- ✓ 2000 publications per year



Synchrotron radiation science


ESRF

Page 6 7th Eiroform School on Instrumentation I 07-11 June 2021 I JC Biasci

ESRF UPGRADE PROGRAMME

Phase I -180M€ (2009-2015)

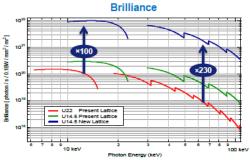
- 19 new endstations and beamlines
- New 8000m2 experimental hall
- Improvement of overall infrastructure and Accelerator systems

EBS -150M€ (2015-2022)

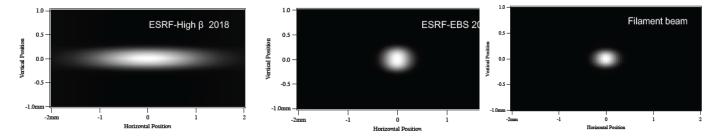
- A new high energy low-emittance source
- A new portfolio of unique instruments
- An innovative scientific
 instrumentation programme

ESRF Extremely Brilliant Source The first high-energy fourth-generation synchrotron

- Substantially decrease the Storage Ring Equilibrium Horizontal Emittance
- o Increase the source brilliance
- o Increase its coherent fraction



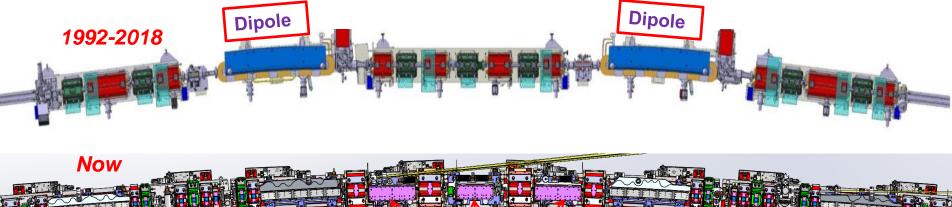
E-beam properties	2018	Now (EBS)
Energy (GeV)	6.04	6
Multibunch current (mA)	200	200
Circumference (m)	844.39	843.98
Horizontal emittance (pm.rad)	4000	140
Vertical emittance (pm.rad)	4	5

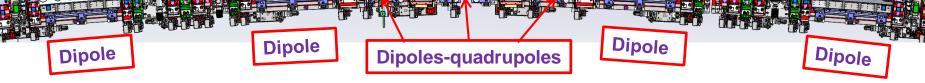

Parameter	2018		EBS: H7BA lattice	
Energy [Gev]	6.03		6	
Current [mA] (multibunch mode)	200		200	
Rel. Energy spread [%]	0.1		0.094	
Energy loss /turn [Mev/turn]	4.9		2.6	
Emittance [pm]	4000	5	134 (no IDs)	5
Tunes	36.44	11.39	76.21	27.34
Beta at IDs	37.6/0.35	3	6.8	2.9
Dispersion at IDs [mm]	134/3.1		2	
R.m.s electron beam size [µm]	385/37	3.9	29.7	3.8
R.m.s electron beam div. [µrad]	10/107	1.3	4.4	1.3
	Horizontal	Vertical	Horizontal	Vertical

- Substantial increase of brilliance at X-ray sources
- use of transverse coherence
- High flux micro-nano X-ray beams

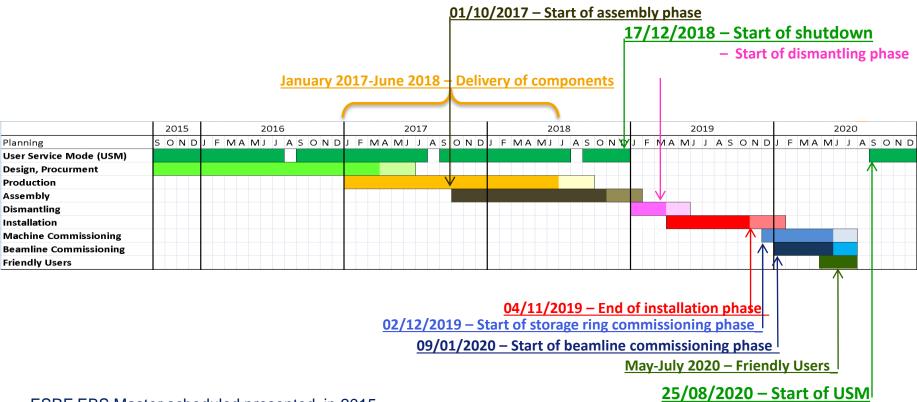
Photon beam @ 30 m

- Undulator 110 periods of 18mm
- E= 23 keV (n=3)

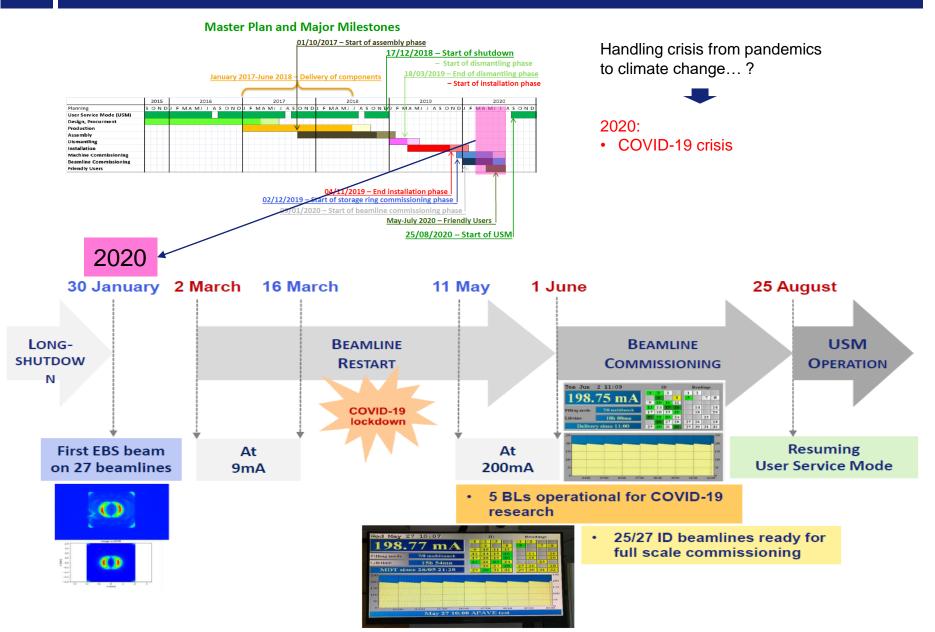



o Old ESRF lattice

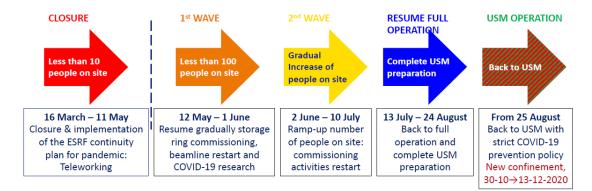
Double Bend Achromat = (2 dipoles + 15 quad. sext.) per cell ID length = 5 m (standard) / 6m / 7m


o ESRF EBS lattice

Hybrid 7 Bend Achromat = (4 dipoles + 3 dipoles-quad + 24 quad., sext., oct.) per cell ID length = 5 m


ESRF EBS Master scheduled presented in 2015

2020: It has not been moved by a single day!


Electron beam:

- 28/11/2019 First three turns in EBS storage ring
- o 06/12/2019 First beam stored

ESRF - HANDLING CRISIS

- Anticipate possible different travel mobility restrictions
- Ensure a fair access for all members and scientific associates

- Start with simple experiments
- Increase complexity at the end of 2020

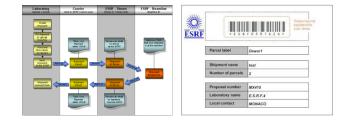
April 2020 Decision by Management to do only remote experiments

- Only mail-in samples
- Experiments have to be performed by ESRF staff
- Or
- · Remote connection with/by users
- Beam time availability reduced

- · Issues and challenges:
 - safety, logistics
 - workload
 - IT, cyber security...

ESRF - HANDLING CRISIS

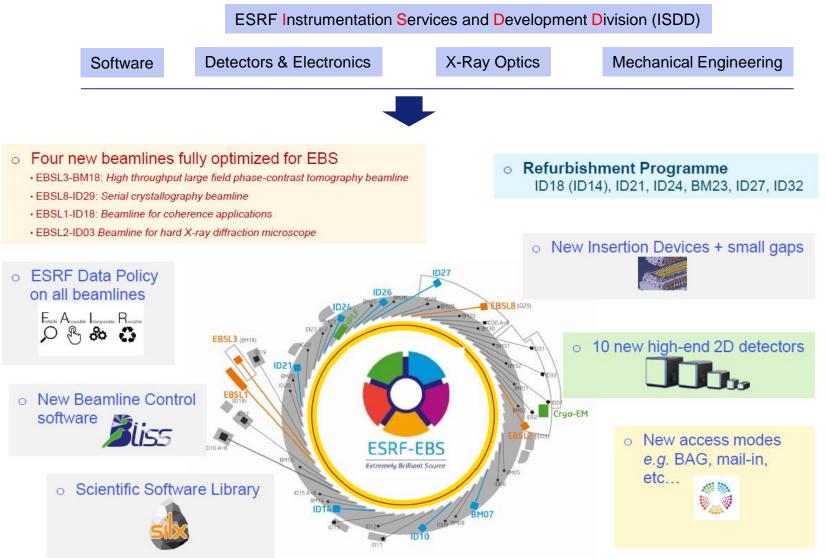
Remote experiments - Remote access


Issues and challenges remote experiments/remote access : •Safety, logistics •Sample transport/safety approval via ICAT/ISPyB

- •IT Infrastructure
 - •BLISS (new beamline control system)
 - •Guacamole/MXCuBE3
 - Network speeds to/from ESRF
 - •Data transfer to/from home lab (ICAT, rsync)
 - •Experiment Tracking (ICAT/ISPyB)
- •On-line data reduction/analysis •Data transfer to NICE
- •Post-experiment processing @ ESRF
- •Work load
 - Much heavier than for normal operation
 For everybody at ESRF, not just for beamline staff
 Reduction in Beam time

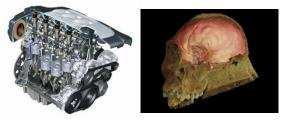
•Difficult, not all planned/allocated experiments can be done with no users on site

A lot of software development ready for the User Service Mode on 25th August 2020



EXPERIMENTAL PROGRAMME OVERVIEW

ISDD Division: Support to Accelerators and Beamlines



NEW BEAMLINE EBSL3 (BM18)

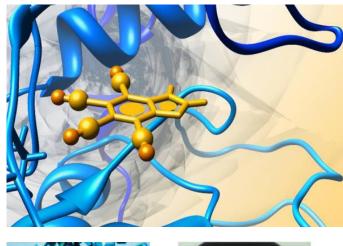
BM18: Multiscale phase-contrast Tomography for large objects

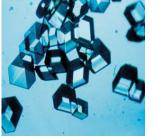
EBSL3 A Beamline for High Throughput Large Field Phase-contrast Tomography

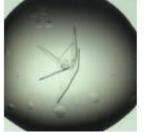
•Hard X-ray energy, high X-ray coherence, large field-of-view , high throughput tomography is ideally suited to non-destructive study of large objects with sub-micrometre resolution

•New perspective for research in palaeontology, archaeology and characterisation of engineered materials by providing the largest high-energy and high-coherence synchrotron beam worldwide for hierarchical imaging and automated tomography

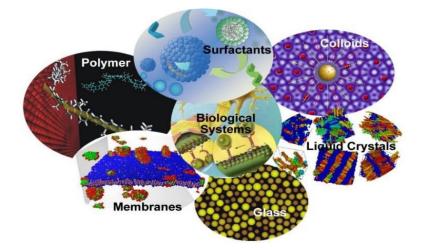
•3D-imaging research applications:


- -materials for space, aeronautics, automotive, etc.
- -micrometre scale anatomy of entire organs
- -hierarchical imaging of large specimens, e.g. Mummies
- -3D-virtual reconstruction of fossils and unique artefacts




up to 40 m of phase propagation @ 400 keV

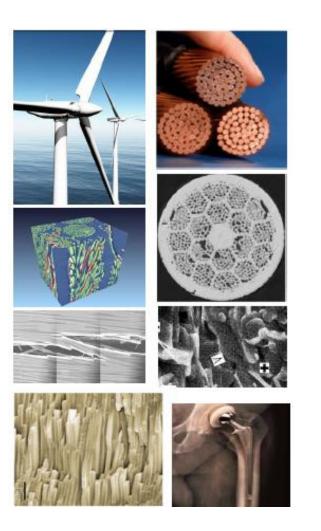
NEW BEAMLINE EBSL8 (ID29)



EBSL8 A Beamline for Serial Macromolecular Crystallography

- Serial crystallography is emerging as a unique technique to solve structures of important classes of proteins available only in sub-micron crystals, whilst monitoring radiation damage
- New perspectives for the Life Sciences by providing a unique (flux, flux-density, stability) facility worldwide with capabilities for room temperature and time-resolution macromolecular crystallography
- Research applications:
 - -fundamental problems such as enzyme kinetics
 -drugs effects into target proteins
 -determinants neutralizing human antibodies against
 - viruses

NEW BEAMLINE EBSL1 (ID18)



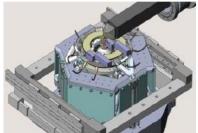
EBSL1 A Beamline for Coherent X-ray Dynamics & Imaging Applications

- Coherent X-rays are ideal to study the complex and unknown correlations in materials and living matter in 3D-space and in time under *operando* conditions
- New perspectives to observe dynamical processes under real conditions down to the single atom by exploiting the EBS worldwide unrivalled X-ray coherent flux at high energies with temporal resolution, down to 100ns
- Research applications:
 - -dynamics and structure of muscle deformation
 -bio-mineralisation processes
 -image formation in photonic devices
 -glasses & melts under real conditions

NEW BEAMLINE EBSL2 (ID03)

EBSL2 A Beamline for Hard X-ray Diffraction Microscopy

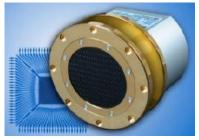
- Hard X-ray diffraction microscopy is a unique tool to study the hierarchical correlations of structures in materials from millimetre down to tens of nanometres
- New perspectives for better understanding of properties of nano-structured and non-homogeneous materials under real conditions by providing a unique (hard X-ray penetration, flux-density, resolution, stability) facility worldwide
- Research applications:
 - -multi-scale characterization of modern engineered materials -biomaterials
 -environmental agent effects and control
 -material fatigue in transportation, industrial plants, etc.



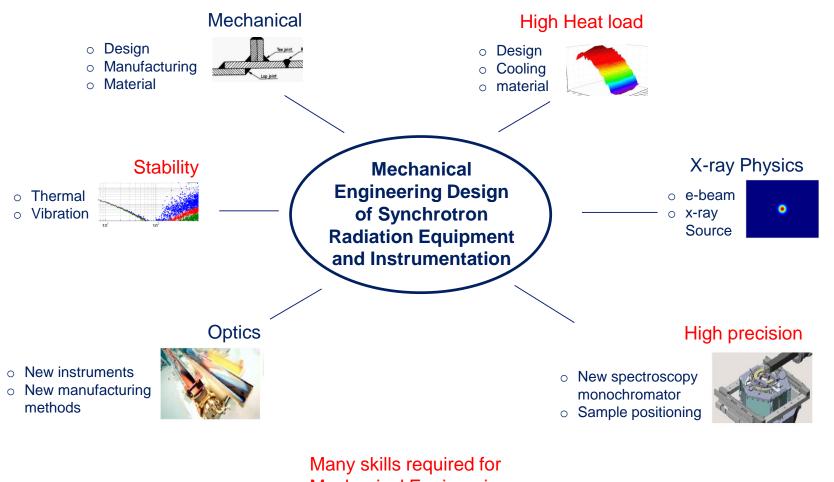
INSTRUMENTATION PROGRAMME OVERVIEW

Beamline control & Data Management

High precision Engineering

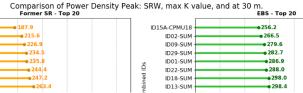


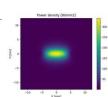
Spectroscopy monochromator

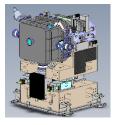

- o Highly-integrated end stations
- Mechatronics

X-Ray Detectors

- New detectors
- o Sensors, DAQ, software
- Exploratory R&D

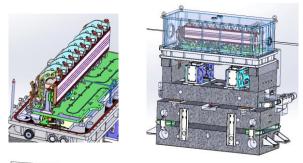


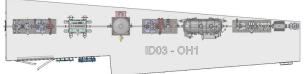



HIGH PRECISION ENGINEERING

Main activities

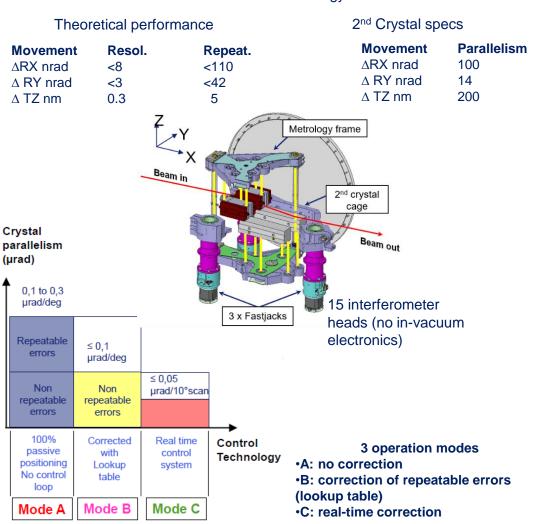
- Support for installation and start-up of the EBS accelerator and of new beamlines equipment.
- Mechanical design and procurement of instrumentation for New beamlines EBSL3-BM18, EBSL8-ID29, ID21, ID24, and ID27.
- **Double Crystal Monochromator:**
 - Contribution to prototype commissioning at ID21. Investigations to further improve crystals angular stability.
 - ✓ Production of 2 DCMs.
- Beamline heat load review from EBS source and former SR, available on intranet Confluence

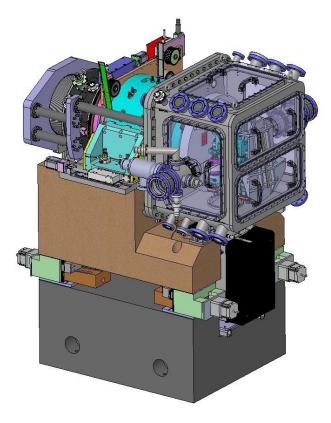




Reception of new generation cryocoolers with features to reduce LN2 vibrations on monochromators crystals.

Mechanical Engineering




HIGH PRECISION ENGINEERING

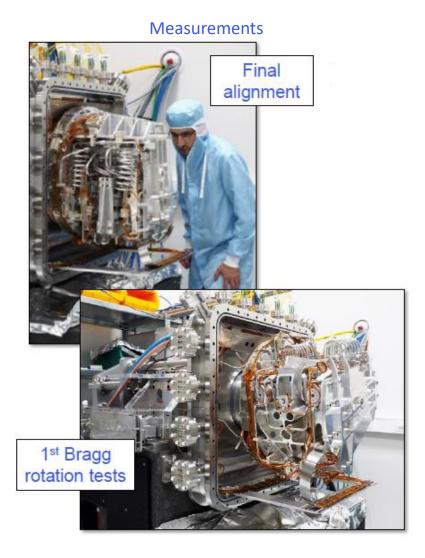
Spectroscopy Double – Crystal monochromator

Mechanical Engineering

Online metrology

DCM project team:

Delphine BABOULIN, **Bob BAKER**, Ray BARRETT, Pascal BERNARD, Gilles BERRUYER, Julien BONNEFOY, Maxim BRENDIKE, Philipp BRUMUND, Yves DABIN, Ludovic DUCOTTE, Hervé GONZALEZ, Olivier MATHON, Thomas ROTH, Remi TUCOULOU


-> Vladimir Krotov video

HIGH PRECISION ENGINEERING

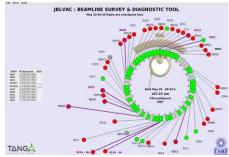
Spectroscopy Double – Crystal monochromator

Mechanical Engineering

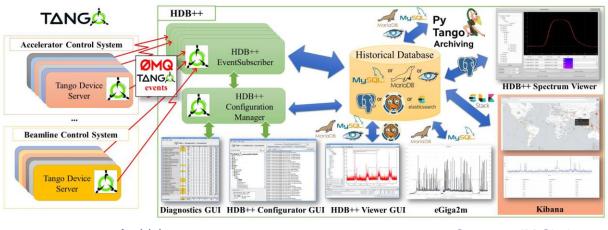
Installation

SOFTWARE

Accelerator control


Beamline control

Data Analysis


Software development

- Hot Swap Manager
- Timing system
- History database
 - HDB web interface
- · Interaction with beamlines
 - Energy scans
 - Insertion devices synchronization with monochromators
 - Connect beamlines to accelerator timing system
- TANGO
 - Web development framework
- Digital twin
 - Accelerator simulator
- ~8000 parameters archived
- Disk cluster 10TB/year
- Time To Leave feature (TTL)
 - Data decimation to optimize network traffic
 - Some data automatically discarded...

Beamlines survey & diagnostic tools

Archiving system

Courtesy JM Chaize

SOFTWARE

Accelerator control

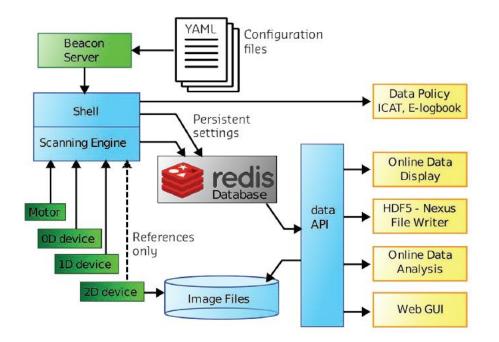
Beamline control

Data Analysis

Bliss - development & deployment of BLISS (new beamlines control system

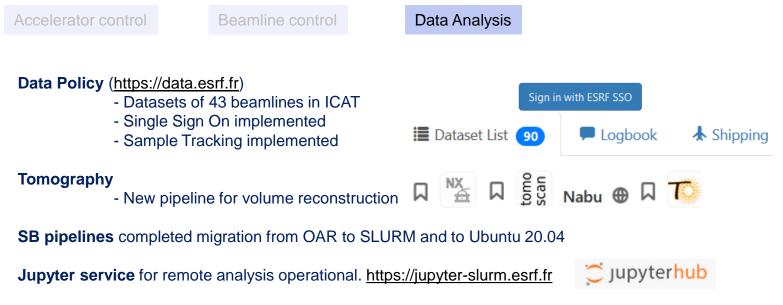
Operation - beamline commissioning

Web GUIs - MxCube3 in production on all SB beamlines, BsxCube + ID21 + BM05 GUI under commissioning


New High level software framework for 2D detectors:

LIMA1 – Bliss and HDF5 saving, Eiger2 validation of set-up, adaptation to changing supplier SDK

LIMA2 - On-going implementation, planning for Jungfrau detector


Data Policy - set-up of experiment registration in ICAT for all beamlines under commissioning

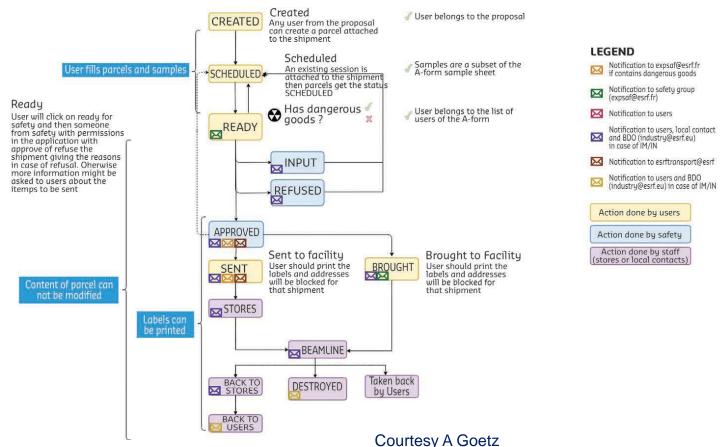
Courtesy M Guijarro

- New Acquisition System contributions
 - NexusWriter in operation.
 - PyMca:

HDF5. Implemented ZFP lossy compression (adapted to floating point data).

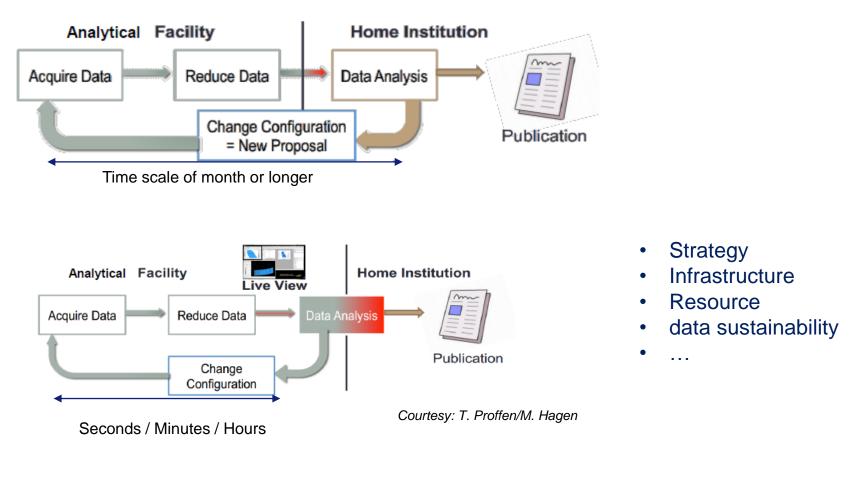
New detectors support

Courtesy A Goetz



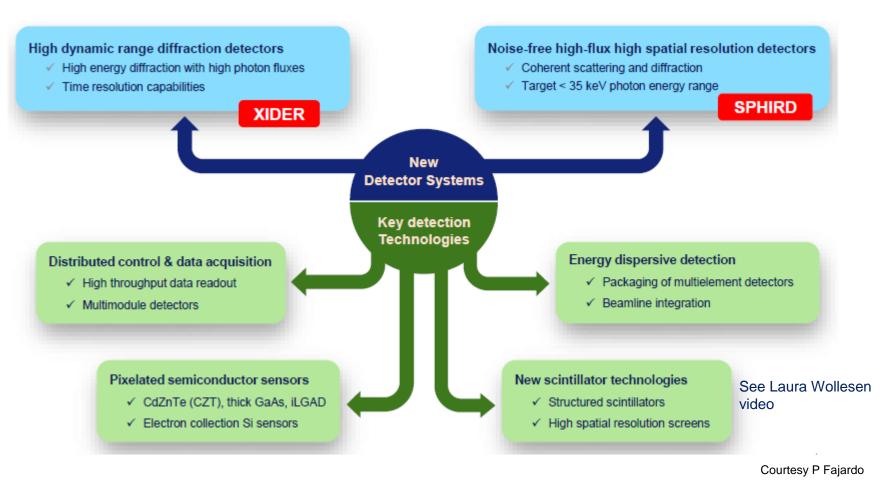
SOFTWARE

SOFTWARE


The COVID-19 pandemic has accelerated the need for large-scale remote and mail-in access solutions for user experiments, and especially the ability to accurately track large numbers of samples and tools transiting through the facility. In only a few months, a sample tracking module has been developed and implemented in an existing module (ICAT+) of the metadata catalogue ICAT.

ON-LINE & OFF-LINE DATA ANALYSIS

Data Management !


Andy Goetz presentation

DETECTORS & ELECTRONIC

EBS Detector Development Plan (DDP)

Detectors & Electronics

- XIDER : detector for time resolved and high energy diffraction applications
- SPHIRD : high count rate detector with small pixels

projects in R&D phase

DETECTORS & ELECTRONIC

SPHIRD : A high-rate photon counting detector with small pixels

- · For optimal use of intense coherent beams
- · Designed to operate with high-Z compound semiconductors (hybrid pixels)
 - to reach high energies: optimised in the 15 30 keV range, usable in a wider range
 - to minimize parallax effects (important with small pixels)
- With a sensor pixel pitch ≤ 50 µm, target in the 30 to 40 µm range
- Able to reach very high count rates: >15 Mcps per pixel (at 10% of pileup)
 ×4 (>60Mcps) with 2×2 binning
- · Investigate the possibility of achieving higher spatial resolution
- · Microelectronics technology node: CMOS 40 nm

XIDER: A Very fast high dynamic range digital integrating detector

- 2D hybrid pixel detector for high energy and time-resolved diffraction experiments with ESRF-EBS
- Based on the concept of incremental digital integration
- Main targets:
 - ✓ Operation with high-Z sensors (30-100 keV)
 - 100 µm pixel pitch, 200 µm (2×2) configurable pixels
 - Able to manage very high photon fluxes (up to 1 Gcps/pixel)
 - 100% duty cycle, deadtime free readout
 - Burst mode up to 5.68 Mframes/s (ESRF 16-bunch frequency)
 - Fully digital readout and enhanced functional versatility

(high flux) 7/8 + 1 mode (time resolved) 176 ns 16-bunch mode

Continuous mode

Courtesy P Fajardo

Page 31

Detectors & Electronics

DETECTORS & ELECTRONIC

Distributed control & high throughput data acquisition

Generic tool to facilitate the setup/building of distributed data acquisition and processing environments

- Fully scalable multi-node computing infrastructure
- Various kind of data receiving & processing nodes (CPU,GPU, FPGA processors)
- Optimised for multimodules detectors **Rashpa**:
- High performance data transfer architecture from the detectors (hardware & low level software)

Lima2:

- New high level software framework for 2D detectors control and data acquisition
- Supports in-house developments & commercial detectors

Structured scintillators

detectors

- Improvement of micro-columnar screens: Csl (TI,Sm), ZnSe (Te), CeBrl, Lul₃
- Micro-structured screens (micropore-arrays, MCPs, Si matrices) filled with micro and nano powders
- Simulation studies

High spatial resolution screens

- Single-crystal films (SCF) of new high density scintillating materials: (Pb,Sr)TiO3, HfO2
- Epitaxial growth of structured (micropillar-shaped) SCFs (LYSO:Ce)

Development of improved packaging of multielement detectors (SDDs)

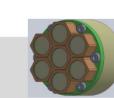
- Optimised modular vacuum-compatible packaging
- Improve the maintainability and performance of the detectors

Beamline integration

 \checkmark Build and validate in-house expertise for the development of beamline custom detectors

Ge detection

- Survey and characterization of available HPGe detector technologies
- ✓ Participation in the development of a new monolithic multielement Ge detector (LEAPS initiative)


Detectors & Electronics

Pixelated semiconductors

Investigation of various kind of pixelated sensors

- CdZnTe (CZT) pixelated sensors from REDLEN and IMEM (Parma)
- Thick GaAs: Cr pixel sensors (700 & 1000 μm) from TSU (Tomsk)
- Pixelated iLGAD (low gaim APD) Si sensors (CNN)
- Electron collection (n on p) Si sensors (shorter time, polarity compatibility with high Z)

1

Integration of energy dispersive

Courtesy P Fajardo

,

X-RAY OPTICS

NEW BEAMLINE AND REFURBISHED BEAMLINE PROJECTS

X-Ray Optics

- White beam mirrors (in-house design, • water-cooled)
- Multilayer monochromators (in-house design, water-cooled)
- Double crystal monochromators

1nm and 0.1 µrad scale figure/slope errors

Refractive lenses

In-house production of Aluminium lenses

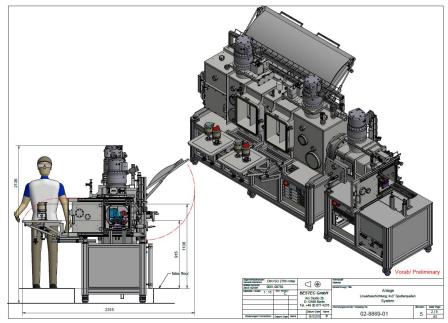
- Installation of a New Compact Multilayer Deposition System (CMCS)
- Thin-film coating of optics optimised for EBS applications (coherent, hard X-rays, substrate correction)

High importance of metrology

Fixed curvature focusing mirror systems Wavefront preserving optics

Crystal spectrometers (in-house design)

- Bent spherical crystal arrays
- von Hamos spectrometers


X-RAY OPTICS

X-Ray Optics

New deposition system optimised for EBS applications:

- · Coatings for use with coherent hard X-ray
- · Accurate positioning of shorter optics
- Optimised motion control for improved coating thickness precision (*correction of imperfect substrates*)

Courtesy Ray Barrett

X-RAY OPTICS

X-Ray Optics

Mirrors & Metrology

optical metrology, mirror systems design, assembly, characterization & simulation

Multilayers design, manufacture, characterization & simulation

Crystal Analysers design, manufacture, characterization & simulation

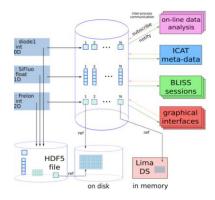
Monochromator systems

design, assembly: channel cut monochromators, polychromators, bent-Laue, fixed-exit, cryocooling

Crystals

design, manufacture, characterization –X-ray topography (BM05)

Refractive Lenses


design, manufacture, characterization & simulation Plasma cleaning KB mirrors contamination removal

Simulation/ BL design Shadow, XOP, Oasys(pyXOP, ShadowOUI, SRW), ...

-> Ray Barrett presentation

CHALLENGES

Beamline Instrumentation control

On-line data analysis

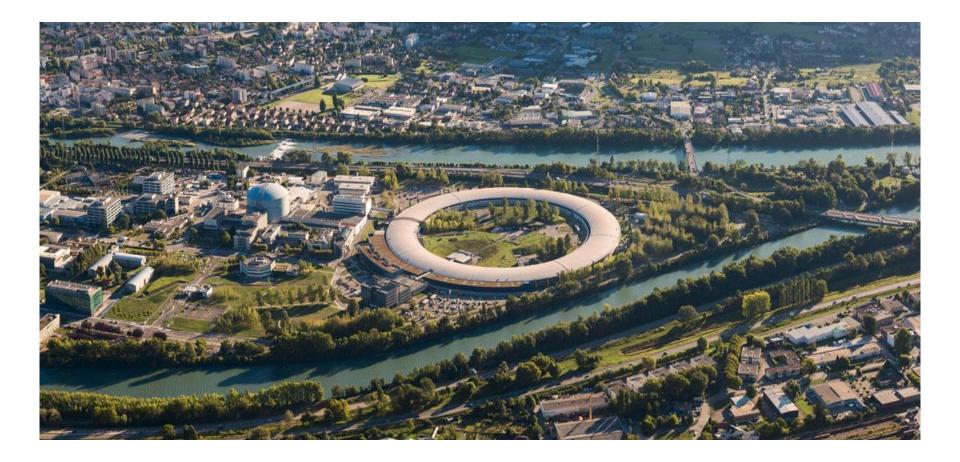
- Data pre-processing
- Tomographic reconstruction
- Crystallographic analysis

Machine learning, Al

Detector technology Scintillators Electronic (timing, FPGA...)

Optics

- Manufacturing & preparation techniques
- Power management
- measurement Cryo undulators with minimum gap
- Power
- Power density


Nano imaging Beamline Instrumentation:

- · faster nano positioning
- vibration control

The European Synchrotron

