

**European XFEL** 

Prof. Robert Feidenhans'l Chairman of the European XFEL Management Board



# **European XFEL**







Management Board and Council Chair

## **European XFEL**

Prof. Robert Feidenhans'l Chairman of the European XFEL Management Board

- What is European XFEL
- History of FELS
- How does a XFEL work
- What Science can be done
- Outlook





#### A Free Electron Laser - the overall Principle



**Figure 4.2** Schematic of XFEL facilities. Electron bunches are emitted from a low-emittance gun (LEG) irradiated by picosecond laser pulses. They are then accelerated in a short LINAC (LINAC 1), compressed longitudinally using one or more bunch-compressor magnet chicanes (BC), then further accelerated using a much longer LINAC (LINAC 2) before entering a long undulator, typically a few hundred metres in length. The SASE process along the undulator produces highly intense x-ray pulses with durations of the order of 50 fs. The electrons are deflected after the undulator using a bending magnet and subsequently dumped.

🗖 💶 📒 European XFEL

Prof. Robert Feidenhans'l, Managing Director European XFEL

### **General layout of the European X-ray Free Electron Laser**



### What is the difference between Synchrotron Radiation and X-ray Lasers?







Prof. Robert Feidenhans'l, Managing Director European XFEL

### We have an exceptionally strong beam: Drilling with XFEL beam through 50 mm of steel in 26 seconds



**Development of X-ray Science** 

Prof. Robert Feidenhans'l, Managing Director European XFEL







### About the European XFEL

- Start 2009
- Task : Construction, operating and development of the X-ray Laser Facility
- Germany 58%, Russia 27 %, others 1–3%
- DESY operates the accelerator
- Staff XFEL about 500, Staff @ DESY about 250
- Start of operation 1. July 2017
   1,54 Brd. € (2018 prices) construction cost
   50% in cash, 50% in-kind
  - Yearly running costs 135 Mio € (2021)



Slide 8

Prof. Robert Feidenhans'l, Managing Director European XFEL

#### Six Experimental Stations

- Typically running in 12 hour mode
- 3 Experiments run simultaneously

### **Experimental Hall**



Prof. Robert Feidenhans'l, Managing Director European XFEL

# **The Users Community**

One Experiment takes about 5 days (60 hours) Experiments are based on excellence



European XFEL

4

### Free Electron Lasers SASE – Self-Amplified Spontaneous Emission

Kondratenko, Saldin (1979) Bonifacio, Pellegrini, Narducci (1984)



X-ray light



11

European XFEL

**FLASH 2005** 

### Emission of Light – "aligment" of electrons



Noncoherent bunch



#### Lasing in one Pass : Self Amplified Spontaneous Emission (SASE)

Tightly collimated (low emittance) electron beam in a long undulator: coherent emission results from microbunching, produced by amplification of shot-noise density fluctuations at the resonant





**Figure 4.6** The self-amplification spontaneous-emission (SASE) process in an XFEL undulator. (a) Because of the interaction of the electrons with the synchrotron radiation they emit, a longitudinal density modulation (microbunching) develops together with a resulting exponential growth of the radiation power along the undulator. Note that in reality the number of microbunches within a conventional electron bunch is much larger than shown here ( $\geq 10^5$  for x-ray FELs). (b) The gain/saturation curve measured at the LCLS in April 2009, along with the theoretically expected curve, calculated using the GENESIS simulation package. Reprinted from [12] courtesy Paul Emma and John Galayda, SLAC National Accelerator Laboratory, with permission of Macmillan Publishers Ltd.

Prof. Robert Feidenhans'l, Managing Director European XFEL

#### Spectrum from Si111 crystal with 333 reflection with 200 shots



Courtesy Naresh Kujala



**Figure 4.8** In-line spectral diagnostics for hard x-ray FEL pulses. Left: by bending thin single-crystal wafers of Si(111), the SASE spectral features can be spatially dispersed onto an area detector. The bent Si(111) crystal used for the full-range diagnostics provides a resolution of  $\Delta E/E \approx 1.3 \times 10^{-4}$ , or  $\Delta E = 1$  eV at 8 keV. The Si(333) crystal, on the other hand, has a resolution of  $9 \times 10^{-6}$ , or 0.07 eV at 8 keV, sufficiently narrow to resolve individual SASE spikes, which are typically separated at 8 keV by approximately 0.2 eV. Right: the SASE spectra can fluctuate significantly from shot to shot, not least regarding the photon energy for which the maximum intensity is found. Adapted from [16] with permission of the American Institute of Physics.

European XFEL

Kujala, SRI2018

Prof. Robert Feidenhans'l, Managing Director European XFEL

### **FEL undulators**

- 2 hard & 1 soft x-ray devices
- 91 segments of undulator, phase shifter, air coils
- Conventional technologyNdFeB magnets, 10 mm





Prof. Robert Feidenhans'l, Managing Director European XFEL



18

### Screeshot Machine Status : Note the measurement is pulse energy



European XFEL

Prof. Robert Feidenhans'I, Managing Director European XFEL

### The European XFEL in the International Context : Hard X-ray FELS



### Key parameters of European XFEL (Superconducting Accelerator)

| Parameter          | Value          |
|--------------------|----------------|
| Electron Energy    | 8.5 – 17.5 GeV |
| Photon energy      | 0.26 - >25 keV |
| Pulse duration     | 2 – 100 fs     |
| Seeding            | In preparation |
| # of pulses        | 27000 /s       |
| # of FELs          | 3              |
| # of instruments   | 6              |
| Start of operation | 2017           |



### What is the difference between Synchrotron Radiation and X-ray Lasers?









Prof. Robert Feidenhans'l, Managing Director European XFEL

### The exploding protein



R.Neutze, R. Wouts, D. Van der Spoel, E. Weckert, J Hajdu, Nature 406, 2000

24

First groundbreaking experiments at FLASH



Chapman et al Nature Physics 2006 European XFEL



Prof. Robert Feidenhans'l, Managing Director European XFEL

### Experiments are typically done in a radial different manner





Jets - Sample delivery

Max Wierdorn, Claudio Stan

(courtesy A. Barty, H. Chapman)



### Science Case : Making Molecular Movies



**Optical Laser Pump Pulse** 











Time series of TRX data from 3 ps to 100 ps at LCLS and difference electron density of the photocycle of

European XFEL

Extended Data Fig. 1 | Setup of a MHz TR-SFX experiment at the EuXFEL (modified from Wiedorn et al., 2018). X-ray pulses arrive in 1.13 MHz bursts which repeat every 100 ms. There are 176 X-ray pulses in the burst. The KB-mirror system focuses the X-ray beam to a 2 – 3  $\mu$ m focal spot. The fs-laser delivers 376 kHz pulses ( $\lambda$ =420 nm, blue) synchronized to the X-ray pulses. The laser focus is 42  $\mu$ m Ø in the X-ray interaction region (dotted circle). The microcrystals are mixed with fluorinated oil and injected by a GDVN. The jet produced by the GDVN, the laser beam as well as the X-ray pulses precisely intersect. The time-resolved diffraction patterns are collected by the AGIPD. Diffraction patterns with common time-delays were separated based on the pulse ID (see also Fig. 2b) and combined to datasets.

| 7th EIROforum School on Instrumentation 7 June 2021 |                 |                 | F            | Prof. Robert Feidenhans'l, Managing Director European XFEL |                    |     |                          |                        | 30                                           |  |
|-----------------------------------------------------|-----------------|-----------------|--------------|------------------------------------------------------------|--------------------|-----|--------------------------|------------------------|----------------------------------------------|--|
|                                                     | S               | ynchrotron      |              |                                                            |                    | XF  | EL                       |                        |                                              |  |
| Dyna                                                | mic Phe         | enomena         |              | nics                                                       |                    |     | ectrons to lattice       |                        | rmations                                     |  |
| Linkage isomerism                                   | Protein folding | Phosphorescence | Fluorescence | Electron-transfer dynan                                    | Phonon propagation | IVR | Energy transfer from ele | Electronic transitions | Atomic motions/<br>follow transitional confo |  |
|                                                     |                 |                 |              |                                                            |                    |     |                          |                        |                                              |  |
| 1 ms                                                |                 | 1 µs            | 1 ns         |                                                            | 1 p:               | S   |                          |                        | 1 fs                                         |  |

**Figure 4.1** Typical time-scales for different dynamical processes in matter. IVR = intramolecular vibrational energy redistribution. The position of any one process is only meant to be representative, and may in reality span a broader range, depending on the details of the system; for example, protein folding is known to cover approximately eight decades, from minutes to microseconds.

ueca

Prof. Robert Feidenhans'l, Managing Director European XFEL

### **General layout of the European XFEL** Hamburg Undulator/Photon Tunnels Schenefeld **Injector at DESY Experiment Hall** campus in Schenefeld 500 m DE -Bahrenfe Linear Accelerator 1.9 km 17.5 GeV



Prof. Robert Feidenhans'l, Managing Director European XFEL

### Photon beamlines (~ 900 m)



Prof. Robert Feidenhans'l, Managing Director European XFEL

### **Complexity of Experiments:**



33

#### **AGIPD Detector at SPB/SFX : Adaptive gain detector**



European XFEL

Courtesy Adrian Mancuso

### **Collection of Data.**

 10 PB of raw data collected in 2020 (despite pandemic)





→ 10^6 x 500 x 10 x 60 x 60 x 24 x 2bytes
 = 864 TB ~ 1PB per day



Prof. Robert Feidenhans'l, Managing Director European XFEL

# The Instruments





Prof. Robert Feidenhans'l, Managing Director European XFEL

European XFEL

7th EIROforum School on Instrumentation 7 June 2021

37

### **Scientific instruments**

| FXE | (Femtosecond | X-ray | Experiments) | ) |
|-----|--------------|-------|--------------|---|
|-----|--------------|-------|--------------|---|



SE2

Ì

ШЗ

ົດ

Combination of spec. & scat. techniques

Ultrafast dynamics of liquids and solid matter

- \_ \_ \_ .. .. . . . .
- Team: D. Khakhulin et al.
- MID (Materials Imaging & Dynamics)
- CDI from nano-structured samples
- XPCS of nanoscale dynamics

Team: A. Madsen et al.

SQS (Small Quantum Systems)

- Ultrafast dynamics of atoms, ions & clusters
- Combination of spec. & coh. scat. techniques

Team: M. Meyer et al.

| SPB/SFX (Single Part., Bioimaging, & SFX)                   |
|-------------------------------------------------------------|
| Coherent diffraction imaging from single part.              |
| Serial fs nano-crystallography                              |
| Team: A. Mancuso et al. / <b>SFX UC</b> (H. Chapman et al.) |
| <b>HED</b> (High Energy Density science)                    |
| TLD (High Lifergy Density science)                          |
| Ultrafast dynamics of highly excited matter                 |
| Combinations of scattering, diff. & spectroscopy            |
| Team: U. Zastrau et al. / <b>HiBEF UC</b> (T. Cowan et al.) |
| SCS (Spectroscopy & Coherent Scattering)                    |
| I lltrafast dynamics of complex solids                      |

- Combination of hr-inelastic spec. & coh.scattering
- Team: A. Scherz et al. / hRIXS UC (A. Föhlisch et al.)

Prof. Robert Feidenhans'l, Managing Director European XFEL

393

9

### SPB/SFX : Scattering from many many Au particles, radical new type of experiment

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                          |          |              |           | Class 39 (2154 frames) |                                                                                                                |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|----------|--------------|-----------|------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| e 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>3 • • •</b>      | 6 7<br>9 9 9             | 8 9<br>Ø | 10 11<br>8 % |           |                        |                                                                                                                |  |  |
| 14<br>• 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SUM of<br>Num. hits | Repetition<br>Rate (MHz) |          |              |           |                        |                                                                                                                |  |  |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample              |                          | 0.28     | 0.55         | 1.1       | Grand Total            | and a second |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | 0                        |          |              |           | 0                      |                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Background          |                          |          | 0            |           | 0                      |                                                                                                                |  |  |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dark                | 0                        |          |              |           | 0                      |                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Silver Behenate     | 0                        |          |              |           | 0                      | -                                                                                                              |  |  |
| and the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120-nm Octahedra    |                          |          |              | 122,204   | 122,204                | -                                                                                                              |  |  |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60-nm Octahedra     |                          |          |              | 443,520   | 443,520                |                                                                                                                |  |  |
| 8 - E 🧶 🖉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30-nm Octahedra     |                          | 84,866   | 1,638,357    | 296,931   | 2,020,154              | And States                                                                                                     |  |  |
| and the second se | 50-nm Octahedra     |                          | 130,968  | 1,150,741    | 1,045,395 | 2,327,104              |                                                                                                                |  |  |
| 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17 nm Cubes         |                          |          | 384,819      | 2,310,829 | 2,695,648              |                                                                                                                |  |  |
| × 🗢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42-nm Cubes         |                          | 72,000   | 1,385,797    | 1,260,735 | 2 718 532              |                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Grand Total         | 0                        | 287 834  | 4 559 714    | 5 479 614 | 10 327 162             | Brend State State State                                                                                        |  |  |

pumped-unpumped -6 ps

Prof. Robert Feidenhans'I, Managing Director European XFEL

### SCS: Magnetic fluctuations in ferromagnetic multilayers (I. Pronin, U ITMO, St. Petersburg)

#### Experiment:

- Nanosize Co/Pt multilayers with perpendicular magnetization
- Pump-probe experiment in transmission geometry at SCS station
- Resonant magnetic scattering at the Co L<sub>3</sub> edge
- SAXS acquisition with ultrafast two-dimensional DSSC detector





### SQS (Small Quantum Systems) All experimental stations are operational !!!

AQS (multi-photon spectroscopy)

Non-linear electronic interaction of atoms with x-rays PI: T. Mazza et al. (SQS)



NQS (imaging)

#### Doped He nanodroplets imaging PI: R. Tanyag, D. Rupp (TU/MBI Berlin)



Xe-doped He droplet

#### SQS-REMI (coincidences)

#### Charge transfer and Coulomb explosion initiated by fs X-ray pulses PI: R. Boll et al. (SQS)



# Diamond Anvil Cells at HED static pre-compressed samples



Prof. Robert Feidenhans'l, Managing Director European XFEL

### MID: Time resolved Holography (User Experiment Tim Salditt, Uni Göttingen)

Goal: to observe cavitation dynamics in water by ns laser pump



# 7th EIROforum School on Instrumentation 7 June 2021 Prof. Robert Feidenhans'l, Managing Director European XFEL FXE: Recent User Experiment (Matthias Bauer, Uni. Paderborn)



44

### How to take part in the activities?

Come to our Users Meeting in January (27-31 Jan)

Many parallel sessions at the users meeting

#### Engage with European XFEL

- Many parallel sessions at the users meeting
- Sabbatical
- Joint PhD positions?

#### Before writing a proposal

- Contact one of the scientist of the instruments you are interested in (or contact me!)
- Investigate the possibility to join a community proposal
- Discuss your idea with a scientist at the instrument
- Make test and sample preparation in our Bio laboratories (XBI)
- Write an appealing and exciting proposal
  - Proposal Review Panel consist of external Experts
  - Rejection rates are high

Prof. Robert Feidenhans'l, Managing Director European XFEL

### All six Instruments are in Users Operation



46

Prof. Robert Feidenhans'l, Managing Director European XFEL

# Publications are coming out

PHYSICAL CHEMISTRY

MUMCATIONS

### From FXE Users

nbrane protein

### Exploring the light-induced dynamics in solvated metallogrid complexes with femtosecond pulses across the

PHYSICAL REVIEW X 10, 021052 (2020)

### From SQS Users

#### Photoelectron Diffraction Imaging of a Molecular Breakup Using an X-Ray Free-Electron Laser

Gregor Kastirke,<sup>1</sup> Markus S. Schöffler,<sup>1</sup> Miriam Weller,<sup>1</sup> Jonas Rist,<sup>1</sup> Rebecca Boll,<sup>2</sup> Nils Anders,<sup>1</sup> Thomas M. Baumann,<sup>2</sup> Sebastian Eckart,<sup>1</sup> Benjamin Erk,<sup>3</sup> Alberto De Fanis,<sup>2</sup> Kilian Fehre,<sup>1</sup> Averell Gatton,<sup>4</sup> Sven Grundmann,<sup>1</sup> Patrik Grychtol,<sup>2</sup> Alexander Hartung,<sup>1</sup> Max Hofmann,<sup>1</sup> Markus Ilchen,<sup>2,5</sup> Christian Janke,<sup>1</sup> Max Kircher,<sup>1</sup> Maksim Kunitski,<sup>1</sup> Xiang Li,<sup>6</sup> Tommaso Mazza,<sup>2</sup> Niklas Melzer,<sup>1</sup> Jacobo Montano,<sup>2</sup> Valerija Music,<sup>2,5</sup> Giammarco Nalin,<sup>1</sup> Yevheniy Ovcharenko,<sup>2</sup> Andreas Pier,<sup>1</sup> Nils Rennhack,<sup>2</sup> Daniel E. Rivas,<sup>2</sup> Reinhard Dörner,<sup>1</sup> Daniel Rolles,<sup>6</sup> Artem Rudenko,<sup>6</sup> Philipp Schmidt,<sup>2,5</sup> Juliane Siebert,<sup>1</sup> Nico Strenger,<sup>1</sup> Daniel Trabert,<sup>1</sup> Isabel Vela-Perez,<sup>1</sup> Rene Wagner,<sup>2</sup> Thorsten Weber,<sup>7</sup> Joshua B. Williams,<sup>8</sup> Pawel Ziolkowski,<sup>2</sup> Lothar Ph. H. Schmidt,<sup>1</sup> Achim Czasch,<sup>1</sup> Florian Trinter,<sup>3,9</sup> Michael Meyer,<sup>2</sup> Kiyoshi Ueda,<sup>10</sup> Philipp V. Demekhin,<sup>5,\*</sup> and Till Jahnke<sup>1,†</sup>



47

. 6, 064702 (2019); https://doi.org/10.1063/1.5124387 ist 2019 . Accepted: 21 October 2019 . Published Online: 04 December 20

r<sup>(0)</sup>, Dominik Oberthü<sup>\*</sup>, O, Richard Bean, Max O. Wiedorn <sup>O</sup>, Juraj Knoska <sup>O</sup>, Ciel <sup>D</sup>, Lars Cumprecht <sup>O</sup>, Martin Domaracky <sup>O</sup>, Iosifina Sarou, P. Lorudu Xavier <sup>O</sup>, Balt<sup>O</sup>, Valerio Mariani, Yaroslav Gevorkov <sup>O</sup>, Thomas A. White <sup>O</sup>, Aleksandra fillanueva-Perez <sup>O</sup>, Carolin Seuring <sup>O</sup>, Steve Aplin, Armando D. Estillore <sup>O</sup>, Jochen der Klyuev <sup>O</sup>, Manuela Kuhn, Torsten Laurus, Heinz Graafsma <sup>O</sup>, Diana C. F. In Trebhio <sup>O</sup>, Filipe R. N. C. Maia, Francisco Cruzz-Mazo <sup>O</sup>, Alfonso M. Gańán-Calvo, <sup>O</sup>, Connie Darmanin <sup>O</sup>, Brian Abbey <sup>O</sup>, Marius Schmidt <sup>O</sup>, Petra Fromme, Klaus arcin Sikorski, Rita Graceffa, Patrik Vagovic, Thomas Kluyver <sup>O</sup>, Martin Bergemann, Iolanta Stuk-Dambietz, Steffen Hauf, Natascha Raab, Valerii Bondar, Adrian P. hapman <sup>O</sup>, and Anton Barty

Prof. Robert Feidenhans'l, Managing Director European XFEL



#### Prof. Robert Feidenhans'l, Managing Director European XFEL



**European XFEL** 

Prof. Robert Feidenhans'l, Managing Director European XFEL











50











