

Handling crisis, from pandemics to climate change.

Scientific instruments on board EO missions

Michael Francois

10/06/2021

ESA UNCLASSIFIED – Releasable to the Public

Earth Climate

Michael Francois | 10/06/2021 | Slide 2

•

Tracking Climate Change from Space

Michael Francois | 10/06/2021 | Slide 3

The Copernicus Sea Land Surface Temperature Radiometer

Application	Temperature accuracy (K)	Spatial resolution (km)	Revisit time
Numerical Weather Prediction	0.2-0.5K	1-50	6-24 h
Climate monitoring,	0.1K	10-50	8 days
climate stability	<0.1K/decade (goal)		
Numerical Ocean Prediction	0.2K	1-10	6-24 h
Coastal/local applications	0.5K	<0.5	1 day
Land surface temperatures	<1K @ 1 km resolution	1 km	Daily
Ice surface temperatures	1K (10%)	<5 km (1 km goal)	Daily
Active fire detection	<3K	0.5-1 km	Daily
Fire monitoring	<3K	0.5–1 km	Daily
(Fire burned area)			
Lake water surface temperatures	<1K (10%)	<1 km	Daily

CCI Sea Surface Temperature

•

Michael Francois | 10/06/2021 | Slide 4

Along Track Scanning Radiometers since ERS-1

		ATSR-1	ATSR-2	AATSR	SLSTR
		ERS-1	ERS-2	ENVISAT	Sentinel3
Swath	Nadir	500	500	500	1400
[km]	oblique	500	500	500	740
SSI [km]	Resolution at sub	1	1	1	0.5
VIS/SWIR	sat point				
SSI [km] IR		1	1	1	1
Band 1 ¹²	Chlorophyll	-	0.555	0.555	0.555
Band 2	Veg. Index	-	0.659	0.659	0.659
Band 3	Veg. Index	-	0.865	0.865	0.865
Band 4	Cloud clearing	-	-	-	1.375
Band 5	Cloud clearing	1.610	1.610	1.610	1.610
Band 6	Cloud clearing	-	-	-	2.250
Band 7	SST	3.740	3.740	3.740	3.740
Band 7 F	Fire	-	-	-	3.740
Band 8	SST	10.850	10.850	10.850	10.850
Band 8 F	Fire	-	-	-	10.850
Band 9	SST	12.000	12.000	12.000	12.000
Life time	As designed	3	3	5	7.5
[years]	As flown	1991-2000	1995-	2002	
			2008	2012	

Michael Francois | 10/06/2021 | Slide 5

•

Along track scanning principle

European Space Agency

esa

The SLSTR observation and telescope principle

European Space Agency

•

Scan cycle

ATSR Scan cycle

SLSTR Scan cycle

+

Michael Francois | 10/06/2021 | Slide 8

SLSTR Instrument Layout

SLSTR and sentinel 3 Layout

Michael Francois | 10/06/2021 | Slide 10

+

The Copernicus CO2M mission for monitoring anthropogenic carbon dioxide emissions

Cities account for ${\sim}70\%$ of global CO $_2$ emissions

.... and have large reduction potential

CO₂ emissions are concentrated:

- 90% emitted over lessthan 8% of area of Europe
- 52% from point sources, primarily power plants

Michael Francois | 10/06/2021 | Slide 11

Observation principle of CO2 Imager

General principle of Push-broom imaging spectrometer

= 🖬 🛌

European Space Agency

+

Concept and design of CO2I/NO2I

Key technolgies

Diffraction gratings

CO2M: Payload design

- 1) Si3N4 ceramic structure
- 2) Thermal guard
- 3) Telescope
- 4) Flight Calibration Unit
- 5) Instrument Support Panel
- 6) Dissipative electronics
- 7) Ultra Stable Interface Bench
- 8) MAP
- 9) CLIM
- 10) Star trackers
- 11) Cryogenic passive radiator
- 12) External housing panels overlayed with MLI

- > Triple bench concept
- Thermally stabilised CO2I & MAP instruments & USIB
- CO2I SWIR FPA passively cooled
- > Detectors:
 - CO2I VIS & NIR: 2x CIS120 (Te2v)
 - CO2I SWIR: 2x NGP (Lynred)
 - MAP: 4x CIS120 (Te2v)
 - CLIM VNIR: AT71547 (Te2v)
 - CLIM SWIR: Xlin-1.7-3000 (Xenics)

Michael Francois | 10/06/2021 | Slide 16

Thank you

ESA UNCLASSIFIED – Releasable to the Public

═╹┛҇═╫╞═╶╬╹┛═╧═┙║║╗══╬═┛╹╹┇═╬┋╋╫╴╦╴┡╢