In Type-II superconductors, there are two critical fields, one corresponding to the end of perfect expulsion of field (Hc1), and the other to the destruction of superconductivity (Hc2). Between the two, we have the mixed state, where magnetic lines of flux enter the material, creating regions of normal state with the core of the associated magnetic vortex. As the field increases, eventually...
Strongly correlated electron systems often reveal ground states with deeply intertwined electronic charge, orbital, spin and lattice degrees of freedom. Their interplay can stabilize novel collective phenomena, whose understanding require the application of external parameters to determine the contributions of the various degrees of freedom. External magnetic fields are often ideal tuning...
Topology, a mathematical concept, recently became a hot and truly transdisciplinary topic in condensed matter physics, solid state chemistry and materials science. All 200 000 inorganic materials were recently classified into trivial and topological materials: topological insulators, Dirac, Weyl and nodal-line semimetals, and topological metals [1]. Around 20% of all materials host topological...
Strong electronic correlations are intimately related to the emergence of a plethora of exotic metallic quantum states such as unconventional superconductivity, electronic-nematic states, charge stripe- and loop order, hidden order and most recently topological states of matter such as skyrmion lattices, topological Kondo insulators and semimetals and chiral superconductors.
Here neutron...
Neutron spectroscopy has been one of the key techniques for understanding the origin of fascinating phenomena in strongly correlated electron systems, including lanthanide and actinide compounds. Rich (H,T) phase diagrams and exotic ground states do not only provide fields for curiosity driven science. The investigation of field-induced phase transitions and the character of the related phases...