EMBO-SAS Grenoble 6/2022

Centre de Montpelli

Combined Use of NMR and SAS for Flexible Systems

Pau Bernadó

Centre de Biologie Structurale - Montpellier

pau.bernado@cbs.cnrs.fr

EMBO-SAS Grenoble 6/2022

Structural characterization of intrinsically disordered proteins by the combined use of NMR and SAXS

Nathalie Sibille and Pau Bernadó¹

Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, 29 rue de Navacelles, 34090 Montpellier, France

Biochem. Soc. Trans. (2012) 40, 955-962.

Molecular BioSystems

Cite this: Mol. BioSyst., 2012, 8, 151-167

www.rsc.org/molecularbiosystems

REVIEW

Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering[†]

Pau Bernadó*^a and Dmitri I. Svergun*^b

Mol. BioSyst. (2012) 8, 151-167.

Available online at www.sciencedirect.com
SciVerse ScienceDirect

Small-angle scattering studies of intrinsically disordered proteins and their complexes

Tiago N Cordeiro¹, Fátima Herranz-Trillo^{1,3}, Annika Urbanek¹, Alejandro Estaña^{1,2}, Juan Cortés², Nathalie Sibille¹ and Pau Bernadó¹ CrossMark

Curr. Opin. Struct. Biol. (2017) 42, 15-23.

Intrinsically Disordered Proteins

Intrinsically Disordered Proteins and Intrinsically Disordered Regions

- IDPs lack stable tertiary and/or secondary structure
- ► IDPs are more common in eukaryotes than in bacteria and archaea: Probably linked with their major biological complexity... Up to ~30-50% of genome
- Rich in charged and non-structuring residues while depleted in hydrophobic ones.
 Enriched in low complexity and compositionally biased sequences
- ► IDPs are the target of the majority of PTM: Phosphorylation, Glycosylation...
- IDPs are submitted to a strong evolutionary activity
- Disordered regions predominate in alternatively spliced regions
- ► Key elements in cancer, cardiovascular and neurodegenerative pathologies
- Interactome hubs are enriched in disordered regions

Specific but Promiscuous

Why Disordered?

Fine tuning of the thermodynamic properties

Accessible to PTM

keywords

GMP biosynthesis Amino-acid biosynthesis Transport Electron transport Lipid A biosynthesis Aromatic hydrocarbons catabolism Glycolysis Purine biosynthesis Pyrimidine biosynthesis Carbohydrate metabolism Branched-chain amino acid biosynthesis Lipopolysaccharide biosynthesis Sugar transport Antibiotic resistance Lipid synthesis Tricarboxylic acid cycle Arginine biosynthesis Ion transport Rhamnose metabolism Peptidoglycan synthesis

Both Ordered and Disordered regions are associated with distinct functions

Disordered Proteins complement the functions of ordered protein regions

Xie et al. *J Prot Res* 2007, 6, 1882.

Differentiation **Transcription** Transcription regulation Spermatogenesis DNA condensation Cell cycle mRNA processing mRNA splicing Mitosis Apoptosis Protein transport Meiosis Cell division Ubl conjugation pathway Wnt signaling pathway Neurogenesis Chromosome partition Ribosome biogenesis Chondrogenesis Growth regulation

keywords

DISORDER

Small-Angle X-ray Scattering (SAXS)

In flexible proteins the measured SAXS curve is the weighted average of all conformations present in solution

 $\langle I(s) \rangle = \sum v_i I_i(s)$

Small Angle X-Ray Scattering Resolution

What does it mean Resolution in SAXS?

Nuclear Magnetic Resonance

NMR a versatile Source of Structural Information

Chemical Shifts

Residual Dipolar Couplings (RDCs) in Partially Aligned Systems

Tjandra, N.; Bax, A. Science, **1997**, 278, 1111-1114.

Residual Dipolar Couplings by NMR

$$D_{ij} = -\frac{\gamma_i \gamma_j \mu_0 h}{8\pi^3} \left\langle \frac{P_2(\cos\theta(t))}{r_{ij}^3} \right\rangle$$
$$D_{ij} = -S \frac{\gamma_i \gamma_j \mu_0 h}{16\pi^3 r_{ij}^3} \overleftarrow{e} A_a (3\cos^2\theta - 1) + \frac{3}{2} A_r \sin^2\theta \cos 2\varphi \overleftarrow{\phi} \overleftarrow{\phi}$$

Residual dipolar couplings depend on the orientation of internuclear vectors relative to the alignment frame

RDCs are a valuable source of information to study structure and dynamics of biomolecules EMBO-SAS Grenoble 6/2022

RDCs in Flexible Proteins

RDCs are the averaged value for all conformations in the ensemble

Paramagnetic Relaxation Enhancement (PRE)

Free electron Radical attached to a Cys mutant

Residues in the proximity experience an enhancement of their R₂ relaxation

> Effect up to r < 25 Å r⁶ dependence

Although it is a relaxation phenomena, in ensembles properties are normally averaged

Protein Dynamics from Relaxation Rates

Complementarity between SAXS and NMR in Structural Biology

NMR		SAXS
Close Contacts: ¹ H- ¹ H nOes LR relationship: RDCs, R ₂ /R ₁	Globular Proteins	Overall Shape Validation
Interfaces: ¹ H- ¹ H nOes, CS, PRE Orientation: RDCs, R ₂ /R ₁	Complexes and Rigid Multi-Domain Proteins	Translational Information Overall Shape Validation
Conform. Sampling: CS, RDCs LR Contacts: PREs	Unstructured Proteins	Dimensions of the Ensemble
Time-Scale Information: Spin Relaxation	Flexible Multi-Domain Proteins	Volume Sampled by the Domains

Combining SAXS and NMR: Two Aproaches

Model Validation

Data-Driven Modelling

Capacity to address complex biological systems Structural models with better resolution More complete models embedding structure and dynamics

Multiple Constraints are measured (Short and Long Range)

Optimization of a single set of coordinates to simultaneously describe all data

Single Structure

Limited number of degrees of freedom (previous knowledge)

Optimization of an **ensemble of coordinates** to simultaneously describe all data available

Ensemble Model

Ill-defined problem...

Data - Information - Model Validation and cross-validation

Needs for the Structural Characterization of Flexibility

Structure Models for Flexible Proteins

Calculation of NMR and SAXS Properties from Individual Conformations

Calculation of Properties from Conformations

SAXS:

CRYSOL, AXES, FOXS, AquaSAXS, pepsiSAXS, WAXSIS...

NMR:

CS: Sparta, Sparta+, ShiftX, CamShift RDCs: PALES, Flexible-Meccano PREs: Flexible-Meccano Hydrodynamics: HydroPro

MD-Simulations Ensemble Flexible Meccano REM IDPConformerGenerator CG-Simulations Ranch...

PROPERTY

Calculation of Properties from Conformations

SAXS:

CRYSOL, AXES, FOXS, AquaSAXS, pepsiSAXS, WAXSIS...

NMR:

CS: Sparta, Sparta+, ShiftX, CamShift RDCs: PALES, Flexible-Meccano PREs: Flexible-Meccano Hydrodynamics: HydroPro

Warning!!!

Not all properties can be averaged Not all properties require the same number of conformations MD-Simulations Ensemble Flexible Meccano REM

IDPConformerGenerator CG-Simulations Ranch...

AVERAGED PROPERTY EMBO-SAS Grenoble 6/2022

Two Philosophies

Model Validation

Data-Driven Modelling

EMBO-SAS Grenoble 6/2022

Two Philosophies

Model Validation

Coil Models to Generate Disordered Ensembles

Alanine

50

100 150

Coil Library

-100 -150

-150 -100 -50

Bernadó et al. *PNAS* 2005, 102, 17002 Ozenne et al. *Bioinformatics* 2012, 28, 463 A comply chosen residue-specific ϕ/ψ and a very simple steric potential are used to define a single conformation

Interpreting RDCs with FM: Local Structural Information

Tiago Cordeiro - Col. Francisco Blanco (Biogune, Bilbao)

Di Biasio et al Biophys J. 2014

Partial Structure in Intrinsically Disordered Proteins

RDCs in Disordered States

Disordered and Extended Regions

Realistic Models of IDPs – Tri-peptide Coil Model

Estaña et al. Structure, 2019, 27, 381

Application to NMR Residual Dipolar Couplings

RDCs measured for ntail MV

Application to NMR Residual Dipolar Couplings

Application to SAXS curves

The ensembles generated are also in agreement with the SAXS curves

The building strategy based on the tri-peptide database produces realistic ensembles of IDPs that are compatible with NMR and SAXS data EMBO-SAS Grenoble 6/2022

Two Philosophies

Data-Driven Modelling

Ensemble Methods in SAXS

- The Ensemble Optimization Method (EOM)

Bernadó, Mylonas, Petoukhov, Blackledge, and Svergun. Structural characterization of flexible proteins using small-angle X-ray scattering. *J Am Chem Soc* 2007, **129**:5656-64.

- Minimal Ensemble Search (MES)

Pelikan, Hura, and Hammel. Structure and flexibility within proteins as identified through small angle X-ray scattering. *Gen Physiol Biophys* 2009, **28**:174–189.

-Basis-Set Supported SAXS (BSS-SAXS)

Yang, Blachowicz, Makowski, Roux. Multidomain assembled sates of Hck tyrosine kinase in solution. *PNAS* 2010, **107**:15757-15762.

-Ensemble Refinement of SAXS (EROS)

Rozycki, Kim, Hummer. SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. *Structure*, 2011, **19**:109-116.

Ensemble Methods in SAXS

- The Ensemble Optimization Method (EOM)

Bernadó, Mylonas, Petoukhov, Blackledge, and Svergun. Structural characterization of flexible proteins using small-angle X-ray scattering. *J Am Chem Soc* 2007, **129**:5656-64.

- Minimal Ensemble Search (MES)

Pelikan, Hura, and Hammel. Structure and flexibility within proteins as identified through small angle X-ray scattering. *Gen Physiol Biophys* 2009, **28**:174–189.

-Basis-Set Supported SAXS (BSS-SAXS)

Yang, Blachowicz, Makowski, Roux. Multidomain assembled sates of Hck tyrosine kinase in solution. *PNAS* 2010, **107**:15757-15762.

-Ensemble Refinement of SAXS (EROS)

Rozycki, Kim, Hummer. SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. *Structure*, 2011, **19**:109-116.

EMBO-SAS Grenoble 6/2022

Bernadó, Svergun et al. J.Am.Chem.Soc. 2007, 129, 5656-5664.

Structural Meaning of the Selected Conformations

How many structures have to be used? It depends on the degree of flexibility

It is tempting to look at the structures at atomic/residue level... Don't do this because (Remember that) SAXS is a low resolution technique and the information content is limited... Only the size/shape of the molecule can be recovered

Structures collected are simply a TOOL to describe the size/shape distributions...

If certain structure is collected at each run... It does not mean that it is prevalent in solution

Structural interpretation can ONLY be done if the fit is from excellent to perfect!!!

Ribosomal L12

Although highly dynamic, L12 samples a reduced conformational space, and mainly adopts highly elongated (anisotropic) structures.

This induces large distances between both CTD domains that leave the NTD dimer in the middle

The linker is partially structured

Col. D. Svergun, M. Akke, M. Tchorzewski

Doubly Monoubiquitinated p15

FACritizism about EOM

"With EOM you can fit an elephant if you want..."

Maria Garcia-Parajo

FACritizism about EOM

"With EOM you can fit an elephant if you want..."

Maria Garcia-Parajo

THIS IS NOT TRUE

GalNAc-T2

Col. Ramón Hurtado (Zaragoza-Spain)

GalNAc-T2

Col. Ramón Hurtado (Zaragoza-Spain)

Lira-Navarrete et al. Nat. Comm 2015

EMBO-SAS Grenoble 6/2022

EMBO-SAS Grenoble 6/2022

A Structural Perspective

Regulation of the Retinoic Acid Nuclear Receptor

Cordeiro, T.N.; Sibille, N.; Germain, P.; Barthe, P.; Boulahtouf, A.; Allemand, F.; Bailly, R.; Vivat, V.; Ebel, C.; Barducci, A.; Bourguet, W.; le Maire, A.*; Bernadó, P.* *Interplay of protein disorder in retinoic acid receptor heterodimer and its corepressor regulates gene expression*, **Structure**, 2019, 27, 1270.

Retinoic Acid Receptor (RAR) / Retinoic X Receptor

Questions

Relevant conformational state in solution?

How this scenario is modified by ligands?

How the transition from repressive to active states is achieved?

NCoR is an IDP... but not a Random Coil

Sequence Conservation in NCoR

Long-Range Contacts & Co-Evolution

N-CoR is largely a disordered protein with partially structured regions and longrange contacts within the C-terminal region of NCoR

NCoR in Complex with RAR/RXR

Region connecting IR ID2 and displays important intensity a reduction

Bound and Free spectra are superimposable.

NCoR is essentially disordered in bound state.

Peak Intensities decrease in a heterogeneous way

Modeling the interaction of RXR/RAR with NCoR

SAXS discriminates between singly- and doubly-bound scenarios

Interaction of RXR/RAR with NCoR

An equilibrium between singly- and doubly-bound scenarios is observed

● In highly flexible proteins, NMR provides the conformational sampling at residue level. SAXS provides the overall size and shape.

• Synergistic application of NMR and SAXS (with the help of computational tools) provides more accurate structural/dynamic models for flexible proteins...

• SAXS provides information about large-amplitude motions in biomolecules and reaches novel and biologically relevant information.

• SANS combined with amino acid specific labelling provides insights into the structure of low-complexity regions in proteins.

Progress in the structural interpretation of SAXS data (in terms of conformational dynamics) will come from the development of theoretical methods to generate and perturb 3D structures...

Structure and Function of Highly Flexible Proteins

Pau Bernadó (DR2) Nathalie Sibille (CR1) Frédéric Allemand (IR1) Aurelie Fournet (AI)

Aurelien Thureau (Soleil)

Xamuel Lund (PhD) Amin Sagar (Pdoc) Carlos Elena-Real (Pdoc) Assia Mouhand (Pdoc)

Alejandro Estaña (PhD) Annika Urbanek (Pdoc) Lucile Senicourt (Pdoc) Matija Popovic (Pdoc) Anna Morató (IR)

