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• SAS curve contain information about distances.

• How to use this information to build model based on the SAXS data.

How can one obtain a 3d model from the 1D SAXS data?



• Computing form factor from geometrical shape

• Bead modelling:

• Principle

• Target function and minimization

• Bead modeling

• Dummy residue modeling

• Words of caution
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Computing form factor from simple geometrical shape

𝐴(𝒔) = න
𝑉𝑟

ρ 𝒓 . 𝑒−𝑖𝒓𝑗𝒔 𝑑𝑉𝑟

𝐼 𝒔 = 𝐴 𝒔 ∙ 𝐴∗(𝒔)

For simple geometrical shapes, the form factor can be computed from the electron density



Example: form factor of a solid sphere

Jan Skov Pedersen



Feigin, L.A. and Svergun, D.I. Structure Analysis by Small-Angle X-Ray and 

Neutron Scattering. Plenum Press 1987

The sphere case is trivial,

It quickly become complicated
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Example: modelling nano-disc

Skar-Gislinge et al. J. Am. Chem. Soc.



Bead models

Chacón, P. et al.(1998) 

Biophys. J.74, 2760-2775. 

→ minimization using genetic algorithm

Svergun, D.I. (1999)

Biophys. J.76, 2879-2886 

→ minimisation using simulated annealing



• Ab initio modelling (contrary to many other modelling approach) will always give a 

nice looking model that fit the data , even if the data are completely wrong.

• Make sure that the SAXS curves used for ab initio correspond to the form factor of 

the solutes you are trying to measure. 



Data reduction

Check for radiation damage

Buffer subtraction



𝑀𝑊 =
𝐼(0)

𝑐
∙
𝑐𝑠𝑡 ∙ 𝑀𝑊𝑠𝑡

𝐼 0 𝑠𝑡

Check overall parameters, before ab initio 

modelling

𝑉𝑃𝑜𝑟𝑜𝑑 = 2 ∙ 𝜋2
𝐼(0)

𝑄

Rambo RP, Tainer JA. Nature. 2013

ln I(s) vs s2

Radius of gyration (Guinier)

Porod Volume

Estimation of molecular weight by forward scattering

Volume of correlation

SAXS mow

𝐼 𝑠 = 𝐼0exp(−
1

3
𝑠2𝑅𝑔

2)

Check for concentration effect and aggregation

Fischer, H. et al. J. Appl. Cryst. 2010

Bayesian MW

Hajizadeh NR, et al. Sci. Rep. 8:7204 

(2018)



Distance distribution function

𝑝 𝑟 = 𝜌2𝛾0 𝑟 𝑉𝑟2

Where 𝛾0 𝑟 is the 

probability of finding 

a point within the 

particle at a distance 

r from a given points.



Ab initio bead modelling: Basic idea

• Find an ensemble of beads with the inter-bead distances are consistent with the p(r)



Beads on a grid
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Computation of the theoretical SAXS 

curve from the bead ensemble and fit to 

the experimental SAXS data.



Penalty terms

• Bead configuration should not only fit the data but also provide a compact model. This 

can be reinforce by the use of penalty terms.

• The looseness penalty term is computed from the bead configuration and is small when 

the bead ensemble has a compact configuration



Finding good bead ensemble

Find the bead ensemble that minimized the target function:

𝑓 𝑋 = 𝜒2 + 𝛼 ∙ 𝑃(𝑋)
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Minimization of the target function

Dmax

2r0

Particle
Solvent

𝑓 𝑋 = 𝜒2 + 𝛼 ∙ 𝑃(𝑋)

Iterative approach:

- a bead can be changed

- the effect of this change is evaluated: is the 

target function smaller after this change?

- If yes, the changed structure is the new 

starting configuration for the next 

iteration. 

- If not, the unchanged structure is used.

Parameterization:
a binary vector,
0 if solvent, 1 if particle  



Starting 

structure: Xini

Candidate 

structure: Xmod

Random 

Modification of 

one bead

∆ = 𝑓 𝑋𝑚𝑜𝑑 − 𝑓 𝑋𝑖𝑛𝑖 < 0

Xini = Xmod

Xini = Xini

Pure Monte Carlo

∆ = 𝑓 𝑋𝑚𝑜𝑑 − 𝑓 𝑋𝑖𝑛𝑖 > 0Repeat until N 

successive random 

modifications do not 

provide lower value



Local Minima vs global minimum

Local search can be trapped in a local 
minimum.
Pure Monte-Carlo search always goes to 
the closest local minimum (nature: rapid 
quenching and vitreous ice formation)

To get out of local minima, global search 
must be able to (sometimes) go to a worse 
point.
Slower annealing allows to search for a 
global minimum (nature: normal, e.g. slow 
freezing of water and ice formation) 



Starting 

structure: Xini

Candidate 

structure: Xmod

Random 

Modification of 

one bead

∆ = 𝑓 𝑋𝑚𝑜𝑑 − 𝑓 𝑋𝑖𝑛𝑖 < 0

Xini = Xmod

Simulated annealing

∆ = 𝑓 𝑋𝑚𝑜𝑑 − 𝑓 𝑋𝑖𝑛𝑖 > 0
Repeat.

after M “successful” 

modifications, decrease the 

temperature.

Stop when function can not be 

minimized after N modification.

With a probability of e-Δ/T

Xini = Xmod

else

Xini = Xini



Simulated annealing

Adapted from 

Wikipedia



Ab initio program



DAMMIN



• Reimplementation of DAMMIN 

written in object oriented code

• About 25 to 40 times faster 

(about 1-2 min for fast run on a 

PC)

• Make use of multiple CPU

• Use adaptive search volume

Franke, D. & Svergun, D. I. (2009) J. Appl. 

Cryst.42, 342–346

At the current iteration:

• dark blue particle, might become solvent

• light blue solvent, might become particle

• white solvent, won’t change

DAMMIN DAMMIF

DAMMIF



DAMMIFDAMMIF in action



Shape analysis for multi-component 

systems: principle

One component, one scattering pattern: 

“normal” shape determination Chacón, P. et al. (1998) Biophys. J. 74, 
2760-2775
Svergun, D.I. (1999) Biophys. J. 76, 2879-

MONSA



Shape analysis for multi-component systems: 

principle

Many components, many scattering 

patterns: shape and internal structureSvergun, D.I. (1999) Biophys. J. 76, 2879-
2886
Svergun, D.I. & Nierhaus, K.H. (2000) J. 

MONSA

MONSA



Example multi-component system

Dölker, Blanchet et al., 

Structure 2013



This approach is very useful for contrast 

matched data.



• Dummy atom modelling on mixture with known volume fraction

DAMMIX
Konarev, P. V. & Svergun, D. I. (2018). IUCrJ



Konarev, P. V. & Svergun, D. I. (2018). IUCrJ

Vestergaard B, Groenning M, Roessle M, 

Kastrup JS, de Weert Mv, et al. (2007) A 

Helical Structural Nucleus Is the Primary 

Elongating Unit of Insulin Amyloid Fibrils . 

PLOS Biology 5(5): e134. 

https://doi.org/10.1371/journal.pbio.005013

4

https://doi.org/10.1371/journal.pbio.0050134


• Fit experimental data directly

• Debeye formula

• Only penalty: minimize surface 
area

• Runtime: minutes

• Example:
• BSA monomer from SEC-SAXS

• 967 experimental data points

• Model superposition to monomer of 
4F5S

• Fit: red. 2=0.9

• MW: ~70 kDa

• Dmax: ~9.0 nm

DATMIF



Resolution limit of dummy atom model

• For dummy atom models, the electron 

density within the protein is considered 

as homogeneous



Dummy residue models 

• Proteins typically consist of folded polypeptide chains
composed of amino acid residues

• At a resolution of 0.5 nm each amino acid can be
represented as one entity (dummy residue)



Dummy residue models 

• Proteins typically consist of folded polypeptide chains
composed of amino acid residues

• At a resolution of 0.5 nm each amino acid can be
represented as one entity (dummy residue)

• In GASBOR a protein is represented by an ensemble of K
dummy residues that are
• Identical

• Have no ordinal number

• For simplicity are
centered at the C
positions



Dummy residue models 

GASBOR

• GASBOR finds coordinates 

of K dummy residues within 

its search volume (red)

Dmax



Dummy residue models 

= <                 …          >

GASBOR

• GASBOR finds coordinates 

of K dummy residues within 

its search volume (red)

• Requires polypeptide 

chain-compatible 

arrangement of dummy 

residues



Dummy residue models 

= <                 …          >

GASBOR

• GASBOR finds coordinates 

of K dummy residues within 

its search volume (red)

• Requires polypeptide 

chain-compatible 

arrangement of dummy 

residues

• Scattering is computed 

using the Debye (1915) 

formula



Distribution of neighbours

• Excluded volume effects and local interactions lead to a characteristic distribution of 

nearest neighbors around a given residue in a polypeptide chain



Svergun, D.I., Petoukhov, M.V, Koch, M.H.J. (2001)

Biophys J 80, 2946–2953.

GASBOR

3.8 Å

Dmax

Ab initio reconstruction: dummy residue 

modelling
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modelling



GASBOR

• Use dummy residues with average density (fixed radius of 1.9 

Å)

• Number(dummy residues) = Number(AA) = K (fixed number)

• Distances to neighbor “residues” like for proteins

• Fixed search space

• Scattering is computed using Debye formula

• Use higher angles (up to 12 nm-1)

• Only for proteins smaller than 660 kDa

Svergun, D.I., Petoukhov, M.V, Koch, M.H.J. (2001) 

Biophys J 80, 2946–2953





Words of caution



Ambiguity in SAXS: C-T



Measure of the ambiguity

Petoukhov, M. V., & Svergun, D. I. (2015). Acta. Cryst. D.

Quantitative measure of the 

ambiguity from the SAXS curve

- 14000 shape topologies 

generated (up to seven beads 

closely packed on hexagonal 

grid).

- Scattering curves computed and 

rescaled to keep only shape 

topology information.

- Scattering map computed from 

these curves.

- By plotting the experimental 

SAXS curves on the map, 

ambiguity intrinsic to the curve 

can be estimated .

Ambimeter



Ab initio model validity

Funari et al. (2000) J. Biol. Chem. 275, 

31283-31288

Shape determination of 5S RNA: six DAMMIN models yielding 
identical fits 



Ab initio model validity

• Superimpose models by 

minimizing the Normalized Spatial 

Discrepancy (NSD)

• Steps

• Principle axes alignment

• Gradient minimization

• Local grid search

SUPCOMB

SUPALM

• Aligns models in Fourier space using spherical harmonics representation

• For MDa size particles – about 10 times faster than SUPCOMB



Reduce ambiguity of ab-initio model

• To reduce ambiguity, several models are built, averaged and compared

• NSDi = <NSDij>j

• MIN( NSDi ) => typical (most probable) model

• <NSD> + 2 σ (NSD) => threshold for outliers

DAMAVER



Model validity

Funari et al. (2000) J. Biol. Chem. 275, 

31283-31288

5S RNA – Solution spread region

5S RNA – Most Populated Volume

5S RNA – Final Solution

within the Spread Region



Resolution of ab initio models

• “Measure ambiguity to estimate 

resolution”

• Resolution estimated from a set of (10-

20) bead model.

• Model compared and aligned.

• Measure of the variability gives an 

estimation of the resolution

Tuukkanen et al., IUCr J. (2016)

SASRES



Can all shapes be reconstructed by ab initio 

modelling? Volkov, V. V. & Svergun, D. I. (2003). J. Appl. Cryst. 36, 860-864.

Globular solid particles

Hollow globular particles

solid bodies with moderate 

anisometry

(elongated particles up to 1:5 

and flattened up to 5:2) can be 

reliably reconstructed from the 

SAXS data.

Mean value NSD : 0.4-0.7

Hollow globular models 

can also be well 

reconstructed



Can all shapes be reconstructed by ab initio 

modelling? Volkov, V. V. & Svergun, D. I. (2003). J. Appl. Cryst. 36, 860-864.

anisotropic solid particles
Hollow anisotropic and acentric

Shape reconstructions of 

anisometric particles are less 

stable and reliable.

Elongated hollow body: the 

channels may appear closed 

from one or both sides

For hollow flattened the resulting 

shapes may show a helical turn 

instead of a hollow disk, even 

after the averaging. 

Acentric voids in hollow spheres 

are only reconstructed if r/R is 

about 0.5



Use of symmetry.

Original 

body

Typical solution with P5 

symmetry

Typical solution with no symmetry



Conclusion

• Ab initio methods are powerful tools to build model from SAXS data.

• Ab initio methods always provide good looking models that fit the data (even if they 
shouldn’t → Beware of what data you put in)

• Different kind of models can be built (dummy atom model, dummy residue model, 
multiphase)

• The models built are of low resolution and have some ambiguity but methods now exist 
to estimate this ambiguity and resolution

• Further reduce ambiguity → add information



Questions?


