Nanoscale degeneracy lifting in triangular antiferromagnets studied by combined PDF+mPDF

Benjamin Frandsen, Brigham Young University Dept. of Physics and Astronomy ADD 2019, 21 March 2019

Acknowledgments

Emil Bozin *Brookhaven National Lab*

Alex Lappas
The Foundation for Research
and Technology—Hellas

Beamtime assistance

- Mikhail Feygenson (ORNL/Jülich)
- Kate Page (ORNL)
- Dave Keen (ISIS/RAL)
- Eric Dooryhee, Milinda Abeykoon (NSLS-II)

Reference: Frandsen, Bozin, Lappas, et al; under review.

Sample synthesis and characterization (FORTH-IESL)

- Eleni Aza
- Antonio Fernandez Martinez

Geometrically frustrated magnets: The geometry of the lattice prevents competing magnetic interactions from being simultaneously satisfied, often with surprising consequences!

Macroscopic ground-state degeneracy; ground states lacking longrange order; quantum spin liquids; unconventional transition mechanisms; extreme sensitivity to perturbations

CuMnO₂ and NaMnO₂: Case studies of frustrated magnetism in strongly correlated TMOs

- Triangular network of $Mn^{3+} S = 2$ spins hosted by monoclinic lattice
- Geometrical frustration is partially relieved at ambient conditions
 - $r_1 < r_2 = r_3$
 - J'/J = 0.27 for Cu, 0.44 for Mn
- Both achieve long-range antiferromagnetic order $(T_N = 65 \text{ K for Cu}, 45 \text{ K for Na})$
- Transition mechanisms show interesting differences

Achieving LRO in CuMnO₂

A conventional magnetoelastic mechanism leads to long-range AF order in CuMnO₂

- Monoclinic-to-triclinic structural phase transition further distorts the triangles such that r1 < r2 < r3, fully lifting the degeneracy
- AF alignment along short bonds, ferro alignment along long bond

Damay et al, PRB 80, 094410 (2009)

How about NaMnO₂?

Long-range AF order occurs below $T_N = 45$ K, but no long-range structural transition occurs.

By what mechanism is the triangular degeneracy lifted if the average structure remains monoclinic at all temperatures?

Potentially relevant experimental facts:

- Strong diffuse magnetic scattering survives into the paramagnetic state
- Bragg peaks show subtle anisotropic broadening at low T
- Significant disorder in the form of Na vacancies and planar defects

Perhaps PDF can solve the riddle!

Results of atomic PDF analysis

$$\frac{\chi_{\text{mono}}^2 - \chi_{\text{tri}}^2}{\frac{1}{2}(\chi_{\text{mono}}^2 + \chi_{\text{tri}}^2)}$$

Results of atomic PDF analysis

Benefit of triclinic

low *r* and low *T*.

20

 r_{mid} (Å)

30

40

10

Local structure of NaMnO₂ is triclinically distorted, despite persistence of monoclinic symmetry in the average structure.

Comprehensive *r*- and *T*-dependent fits

Boxcar fits using the monoclinic and triclinic models were carried out on a dense r and T grid
 Lifts degeneracy of isosceles triangles

• Triclinic splitting $d = r_2 - r_3$ extracted from each refinement

Enhanced triclinic splitting at low r, weak local triclinicity above T_N

Investigating the local magnetic structure

Magnetic PDF

ATOMIC

$$f(r) = \frac{1}{N\langle b \rangle^2} \sum_{i \neq j} \frac{b_i b_j}{r} \delta(r - r_{ij})$$

MAGNETIC

$$f(r) = \frac{1}{N} \frac{3}{2S(S+1)} \sum_{i \neq j} \left(\frac{A_{ij}}{r} \delta(r - r_{ij}) + B_{ij} \frac{r}{r_{ij}^3} \Theta(r_{ij} - r) \right)$$

$$A_{ij} = S_i^y S_j^y$$

$$B_{ij} = 2S_i^x S_j^x - S_i^y S_j^y$$

Positive peaks for *ferromagnetic* correlations

Negative peaks for antiferromagnetic correlations

Frandsen et al, Acta A 70, 3-11 (2014)

Example: Antiferromagnetic MnO

Example: Antiferromagnetic MnO

Total PDF fit (atomic + magnetic)

Magnetic PDF refinements for NaMnO₂

Magnetic PDF refinements for NaMnO₂

Magnetic PDF refinements

Magnetic model parameters:

- Scale factor
- Exponential damping envelope
- Two polar angles to define spin direction

Connection to atomic PDF results: Pinning down the transition mechanism

- Local triclinicity and AF correlations share identical temperature dependence
- Long-range AF order triggered once AF correlations reach length scale of local triclinic distortion (~2 nm)
- Novel transition mechanism: Short-range triclinic distortion lifts triangular degeneracy on the nanoscale, enabling long-range antiferromagnetic order

Comparison to CuMnO₂: Whence the difference?

CuMnO₂ achieves magnetic LRO through a *global* degeneracy-lifting structural distortion; NaMnO₂ does the same through a *local* distortion

Stacking faults in NaMnO₂ and CuMnO₂

TEM data

Comparison to CuMnO₂: Whence the difference?

CuMnO₂ achieves magnetic LRO through a *global* degeneracy-lifting structural distortion; NaMnO₂ does the same through a *local* distortion

Theoretical prediction of NN Heisenberg model with magnetoelastic coupling: Beyond a critical level of exchange disorder, a global structural transition will NOT occur

Conclusions

- NaMnO₂ displays a well-defined local triclinic distortion correlated over a 2 nm length scale that increases at low temperature
- Short-range AF correlations persist above T_N and track with the local triclinic distortion
- Local triclinic distortion lifts the magnetic degeneracy on the nanoscale, enabling longrange AF order below 45 K
- Rare example of short-range structural distortion coupling to long-range AF order
 - Combined atomic and magnetic PDF analysis was key to understanding this system

