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We study the interplay between charge and spin ordering in electronic liquid crystalline states with a

particular emphasis on fluctuating spin stripe phenomena observed in recent neutron scattering experi-

ments. Based on a phenomenological model, we propose that charge nematic ordering is indeed behind

the formation of temperature dependent incommensurate inelastic peaks near wave vector (!, !) in the

dynamic structure factor of YBa2Cu3O6þy. We strengthen this claim by providing a compelling fit to the

experimental data.
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The variety of competing ordering tendencies is both a
hallmark of correlated electron fluids, such as cuprate and
Fe-based superconductors [1,2], and a theoretical chal-
lenge. As such, a clear identification of a broken sym-
metry offers a valuable guiding principle. Recent observa-
tions of temperature, energy, and doping dependent onset
of anisotropy in inelastic neutron scattering (INS) by
Hinkov et al. [3] provides an opportunity for just such
identification.

The symmetry of the ‘‘fluctuating spin stripe’’ phe-
nomena (one-dimensional incommensurate spin modula-
tion at finite energy) observed in Ref. [4] is consistent with
that of a nematic phase [5] (a metallic state that breaks
rotational symmetry without breaking translational sym-
metry). Furthermore, the qualitative departure in the mag-
netic response of underdoped YBa2Cu3O6þy in Ref. [4]
from that of optimally and overdoped regimes y * 0:5 [6–
9] indicates the possible existence of a quantum critical
point at around y" 0:5 as we sketch in Fig. 1. In specific,
low-energy features are enhanced in INS of y ¼ 0:45while
the high energy ‘‘hour-glass’’ dispersion which is promi-
nent at higher doping is suppressed [6– 10]. However,
despite the reported temperature dependence of the finite-
frequency incommensurability being suggestive of an or-
der parameter [3], it has not been clear how this quantity
can be related to a specific order parameter.

A number of theoretical studies considered possible
signatures of electronic liquid crystal physics in the mag-
netic response [11– 13]. While these studies shed light on
the hour-glass dispersion observed in y * 0:5 at high en-
ergies, their connection with the low-energy phenomena in
the underdoped regime with y < 0:5 is unclear. Moreover,
they focused on the superconducting phase while the ob-
served onset of fluctuating spin stripe behavior is at TN "
150 K, well above the superconducting ordering tempera-
ture Tc ¼ 35 K.

In this Letter we propose that charge nematic ordering
drives the fluctuating spin stripe phenomena observed in
underdoped YBa2Cu3O6þy. We consider a metallic system
proximate to antiferromagnetic (AFM) ordering and show
that charge nematic ordering quite uniquely can induce
fluctuating and even static spin stripes thus providing a
concrete connection between the charge [14] and spin
aspects of liquid crystalline behavior in underdoped
YBa2Cu3O6þy. Our claims are supplemented by a success-
ful fit with available INS data [4].
Phenomenological model.—Hinkov et al. [4] detect the

dynamic onset of anisotropy through incommensurate in-
elastic peaks near the AFM wave vector Q ¼ ð!;!Þ in a
metallic system (see Fig. 2). Given a microscopic theory of
itinerant magnetism being an open question, we take a
phenomenological approach as a first pass through the
problem. In the presence of long-range AFM ordering,
low-energy excitation in the particle-hole channel is domi-
nated by gapless spin waves near Q with infinite lifetime:
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FIG. 1 (color online). Schematic phase diagram of
YBa2Cu3O6þy.

PRL 104, 106405 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

12 MARCH 2010

0031-9007=10=104(10)=106405(4) 106405-1 ! 2010 The American Physical Society

Rev. Mod. Phys. 75, 1201 (2003)

High-Tc superconductorsColossal magnetoresistance

PRL 98, 137203 (2007)

form of the total scattering structure function F!Q" up to a
value of Qmax of 35 !A# 1. This high Qmax, coupled with the
good statistics from GEM and NPDF, result in high-quality
PDFs with minimal spurious low-r ripples and negligible
termination ripples, as evident in Fig. 1. The PDF analysis
reported here involves both direct data evaluation and
structural modeling using the program PDFFIT [25].
Results of complementary average crystal structure mod-
eling, carried out using the program GSAS [26], are also
presented. All refinements were carried out using the O or
O0 structural models in the Pbnm space group with iso-
tropic displacement parameters [27]. Our analysis does not
address the ordering of localized charges such as observed
in the charge ordered state at x $ 0:5 [28 ].

The results of the average crystal structure evaluation is
summarized in Figs. 2(a) and 3. In the orthorhombic O
phase [29], the local JT distortion amplitude (the length of
the JT-long-bond) is the same as the average long range
ordered value. The distortion is constant with temperature
for fixed Ca content, but decreases linearly with increasing
Ca content. Upon crossing into the pseudocubic O0 phase,
the average JT distortion disappears abruptly [Fig. 2(a) and
3]. However, this effect is accompanied by the anomalous
increase of the isotropic thermal parameters on oxygen
sites, Fig. 2(d). This is consistent with the understanding
that the pseudocubic O0 phase in the insulating state con-
sists of orbitally disordered, JT distorted, octahedra
[30,31], and that this picture can be extended to finite
doping. In the ferromagnetic metallic (FM) phase, the
Rietveld refined JT-long-bond disappears, but there is no
significant enlargement of the refined oxygen thermal pa-
rameter showing that the local JT-long-bond is also absent
[14 ]. Structural refinements to the PDF data over a wide
range of r (rmax $ 20 !A) mimic the Rietveld results rather
closely [Fig. 2(b) and 2(e)]. This shows that the average
structure result is already obtained for a PDF refinement
over a 20 Å range, suggesting that the size of local orbital
ordering correlations is limited to this range.

The size and shape of the local MnO6 octahedra can be
obtained by fitting the PDF over a narrow r range of 6 Å.
The length of the local long Mn-O bond has been obtained

for all compositions and temperatures studied, and is
shown as a contour plot in Fig. 2(c). The color scale has
been set such that a fully shortened long-bond of 1.96 Å
shows up as black. The presence of color therefore indi-
cates a finite local JT distortion. There is a striking resem-
blance between the contour plot of the local JT-long-bond
in Fig. 2(c) and the electronic phase diagram of this man-
ganite that is superimposed. The position of the phase
transition lines were verified from magnetization and re-
sistivity measurements of the samples used in this study.

First, we note that the local JT distortion is present in the
entire insulating part of the phase diagram, but that it is
effectively removed for the metallic compositions at lowest
temperatures. Second, it is seen that the magnitude of the
local JT distortion has a relatively strong doping depen-
dence at lower Ca concentrations, with the bond length
versus concentration curve flattening at higher Ca doping
levels.

Selected constant temperature cuts are shown in
Fig. 3(a) – 3(c), for 550 K, 250 K, and 10 K, respectively.
The square symbols show the behavior of the average
structure. The JT-long-bond decreases with doping in the
orbitally ordered O phase, but then abruptly shortens at the
structural phase transition, indicated by the dotted line in
the figure. In contrast, the local JT bond is insensitive to the

 

FIG. 1 (color online). % are the G!r" of x $ 0:22 sample at
10 K; solid red line is the calculated G!r" from the crystal
structure model. The difference curve is shown offset below.

 

FIG. 2 (color online). Contour plot of the JT distortion (long
Mn-O distance) in (x, T) parameter space as obtained from
(a) Rietveld analysis and PDF analyses over (b) 20 Å and
(c) 6 Å ranges, respectively. Contour plot of the isotropic
displacement parameter of oxygen, Uiso!O2" in Pbnm setting,
as obtained from (d) Rietveld analysis, and PDF analyses over
(e) 20 Å and (f) 6 Å ranges. In all the panels the solid curves
indicate TJT and Tc phase lines, while dotted vertical lines
indicate IM phase boundaries, as determined from the sample
characterization measurements.
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Total scattering
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ki,ωi

kf,ωf

2θ

detector

source

I(Q) =

Z 1

�1
I(Q, E) dE

q Total scattering: integral over energy transfer

q Measures instantaneous correlations

q Quasi-static approximation: 

q Total scattering = Bragg + diffuse 

Z
dE ⇡

Z
dEf

Z
dEf

diffraction (Ef not analysed)

if E << Ei

Energy transfer
E = Ei – Ef

Wavevector transfer
Q = ki – kf

ki, Ei

kf, Ef



Nuclear neutron scattering – Equations

Squires, Introduction to Thermal Neutron Scattering, CUP (1978)
Debye, Ann. Phys. (Berlin), 351, 809 (1915)

Ø Single crystal
b = coherent scattering length
N = number of atoms
rij = vector separation
〈 〉 = thermal average

In(Q) = b2

0

@1 +
1

N

X

i,j 6=i

hexp(iQ · rij)i

1

A

qAssume elemental system (for simplicity)



Squires, Introduction to Thermal Neutron Scattering, CUP (1978)
Debye, Ann. Phys. (Berlin), 351, 809 (1915)

Ø Powder

scattering from atom-pair correlationssingle-atom
scattering
(ideal gas)

Ø Single crystal
b = coherent scattering length
N = number of atoms
rij = vector separation
〈 〉 = thermal average

Debye formula
rij = radial separation

In(Q) = b2

0

@1 +
1

N

X

i,j 6=i

hexp(iQ · rij)i

1

A

In(Q) = b2

0

@1 +
1

N

X

i,j 6=i

⌧
sinQrij
Qrij

�1

A

spherical 
average

Nuclear neutron scattering – Equations
qAssume elemental system (for simplicity)



Magnetic neutron scattering – Equations 

Lovesey, Theory of Neutron Scattering from Condensed Matter, OUP (1987)

Ø Single crystal

component of spin S perpendicular to QS? = S� (S · Q̂)Q̂

C = 0.07265 barn
f(Q) = form factor

Im(Q) = C [gf(Q)]2

2

42

3
S(S + 1) +

1

N

X

i,j 6=i

⌦
S?
i · S?

j

↵
exp(iQ · rij)

3

5

qAssume magnetic ions of a single type, with fixed locations



Lovesey, Theory of Neutron Scattering from Condensed Matter, OUP (1987)
Blech & Averbach, Physics 1, 31 (1964)

Ø Powder

scattering from spin-pair correlationssingle-spin scattering (ideal paramagnet)

Ø Single crystal

Aij = Si · Sj � (Si · r̂ij) (Sj · r̂ij)
Bij = 3 (Si · r̂ij) (Sj · r̂ij)� Si · Sj

spin correlation 
coefficients

qAssume magnetic ions of a single type, with fixed locations

component of spin S perpendicular to QS? = S� (S · Q̂)Q̂

C = 0.07265 barn
f(Q) = form factor

Im(Q) = C [gf(Q)]2

2

42

3
S(S + 1) +

1

N

X

i,j 6=i

⌦
S?
i · S?

j

↵
exp(iQ · rij)

3

5

Im(Q) = C [gf(Q)]2

8
<
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S(S + 1) +

1

N

X

i,j 6=i


hAiji
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Magnetic neutron scattering – Equations 
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Neutron scattering – Order vs disorder

Real space, r Reciprocal space, Q

q Long-range order à Bragg scattering
Intensity (arb.)
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q Long-range order à Bragg scattering
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Neutron scattering – Order vs disorder



Real space, r Reciprocal space, Q

q Random disorder à flat scattering
Intensity (arb.)

0 1

Neutron scattering – Order vs disorder



Real space, r Reciprocal space, Q

q Random disorder à flat scattering
Intensity (arb.)

0 1

Neutron scattering – Order vs disorder



q Correlated disorder à structured diffuse scattering

Real space, r Reciprocal space, QReciprocal space, Q
Neutron scattering

Intensity (arb.)
0 1

(220)

(004)

Neutron scattering – Order vs disorder

Wehinger et al., JPCM 26, 265401 (2014)



q Correlated disorder à structured diffuse scattering

Real space, r Reciprocal space, Q
Spin-polarised neutron scattering

Intensity (arb.)
0 1

(004)

(220)

Neutron scattering – Order vs disorder

Fennell et al., Science 326, 415 (2009)



Powder samples

single crystal

(330)
(220)

(004)

powder

Neutron scattering – Powder vs crystal

Blech & Averbach, Physics 1, 31 (1964)



Neutron scattering – Powder vs crystal

single crystal

(220)

(004)

powder

?

Blech & Averbach, Physics 1, 31 (1964)
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q Goodness-of-fit metric:

1. Big box:  ~104 spin vectors, initially randomised
2. Rotate a spin at random

Accept move if

Otherwise, accept with probability

3. Repeat step 2 until fit achieved
4. Calculate diffuse scattering, correlation functions, etc..

Reverse Monte Carlo (RMC) refinement

McGreevy, JPCM 13, R877 (2001)
Keen & McGreevy, JPCM 3, 7383 (1991) 

��2  0



Spin ice – Local structure solution
q Reverse Monte Carlo refinement from random initial configurations

Andrew Goodwin
Oxford

Paddison & Goodwin, PRL 108, 017204 (2012)



Spin ice – Local structure solution
q Reverse Monte Carlo refinement from random initial configurations

Andrew Goodwin
Oxford

Paddison & Goodwin, PRL 108, 017204 (2012)



Spin ice – Local structure solution
q Reverse Monte Carlo refinement from random initial configurations

Andrew Goodwin
Oxford
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Paddison & Goodwin, PRL 108, 017204 (2012)



Exact RMC

(c)

(b)

(a)

Exact RMC
(hk0)

(hk0)

(hk0) (hhl)

(hhl)

(hhl)

0

1

0

1

0

1

Q (Å–1)
0 51 2 3 4

Exact RMC

(c)

(b)

(a)

Exact RMC
(hk0)

(hk0)

(hk0) (hhl)

(hhl)

(hhl)

0

1

0

1

0

1

Q (Å–1)
0 51 2 3 4

Paddison & Goodwin, PRL 108, 017204 (2012)



A note of caution

Cliffe & Goodwin, Phys Stat Sol B 250, 949 (2013)

2 Cliffe and Goodwin: Local geometry from PDF

Figure 1 A comparison of three models of a-Si with similar pair correlations: (left) a configuration produced by RMC
refinement against idealised a-Si PDF data, (centre) a similar configuration but produced using the RMC+INVERT method
[3], and (right) a model generated using the WWW algorithm [11,12]. (a) Representations of portions of the configura-
tions themselves, coloured according to coordination number (blue = four; red otherwise). (b–d) The corresponding (b)
coordination number distributions, (c) PDFs, and (d) Si–Si–Si bond angle distribution functions.

clear: the higher-order correlations are completely fixed
in the former (we are used to the idea of using crystal-
lography to determine bond angles and torsion angles in
crystalline materials) and completely free in the latter (an
excellent demonstration of this can be found in Ref. [9]).
Real disordered materials will lie between these two ex-
tremes, corresponding to the situation where a number of
meaningfully-different three-dimensional models reflect
the PDF equally well.

Amorphous silicon—perhaps the canonical disordered
material by virtue of its chemical simplicity—illustrates
this point clearly. Its structure is widely believed to be well-
described in terms of a continuous random network (CRN)
of tetrahedrally-connected Si centres [13]. Arguably the
highest quality atomistic models of a-Si have been gener-
ated using the bond-switching algorithm of Wooten Winer
and Weaire (WWW) [11,12], yielding CRNs that are con-
sistent with a variety of experimental measurements and
ab initio calculations—X-ray or neutron diffraction, NMR
[14], Raman spectroscopy [15], and band structure calcu-
lations [13]. One such model is shown on the right-hand
side of Fig. 1, together with the corresponding coordina-

tion number histogram, PDF and Si–Si–Si bond angle his-
togram. That the third-order (bond angle) correlations are
well-defined is clear from the existence of a single nar-
row maximum in the bond angle-distribution function. So
the absence of structural periodicity does not imply that
higher-order correlations are poorly fixed. Yet if the PDF
of a-Si is used to drive atomistic refinement using a re-
verse Monte Carlo (RMC) algorithm, one obtains configu-
rations with an almost perfect correspondence to the PDF
but with very different higher-order correlations; one such
configuration and the corresponding histogram functions
are shown on the left-hand side of Fig. 1. The bond an-
gle correlation function is now significantly more com-
plex, with the most structured contribution corresponding
to a high concentration of Si3 “triangles” [16]. These trian-
gles are the most obvious incorrect feature of the structural
model because they give rise to mid-gap electronic states
that are not observed experimentally [13].

Historically, the popular remedy for improving PDF-
driven structural models is to incorporate in the fitting pro-
cess one more additional constraints that act to improve
the extent to which given correlation functions are physi-

Copyright line will be provided by the publisher
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a-Si

q RMC produces most disordered configuration consistent with input 
data and constraints (crystal structure, spin length)

q Spin liquids more strongly constrained than actual liquids & 
amorphous systems



Spinvert – What does it do?

q Refinement of atomistic model to magnetic diffuse scattering data

q “Model independent” – no spin Hamiltonian

q Design principles:
Ø Easy to use
Ø Fast to run
Ø Straightforward to customise

Paddison, Stewart & Goodwin, J. Phys.: Condens. Matter 25, 454220 (2013)



Spinvert – What doesn’t it do?

q Magnetic diffuse scattering only

q No positional disorder, no magneto-elastic coupling

q Single type of magnetic ion

Paddison, Stewart & Goodwin, J. Phys.: Condens. Matter 25, 454220 (2013)



paddisongroup.wordpress.com/software
q Program, instructions, examples

q Distributed as Fortran90 source code
Ø Needs to be compiled on your system
Ø Download compiler from gcc.gnu.org/wiki/GFortranBinaries
Ø gfortran spinvert.f90 -o spinvert –O3

Spinvert – How to get it?

Paddison, Stewart & Goodwin, J. Phys.: Condens. Matter 25, 454220 (2013)



Spinvert – How to get suitable data?
q Key challenge: isolating magnetic diffuse scattering

q Three main methods:
1. Polarised neutrons à e.g. D7 at ILL
2. “Total scattering” à Matt Tucker & Helen Playford’s talk
3. Temperature subtractions à special requirements for Spinvert:

Tlow Thigh

Ø place data on absolute intensity scale (barn sr–1 spin–1)
Ø measure magnetic moment length
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Gd3Ga5O12 – Structure

Kinney & Wolf, J. Appl. Phys. 50, 2115 (1979)
Yavors’kii, Enjalran & Gingras, PRL 97, 267203 (2006)

q Interpenetrating networks of corner-sharing triangles in 3D

q Antiferromagnetic interactions of strength ~2 K

Pascale Deen
(ESS/Lund)

Henrik Jacobsen 
(Copenhagen) 



0.175 K – 9 K
D1B, ILL

Gd3Ga5O12 – Experimental data

Petrenko, Ritter, Yethiraj & Paul, PRL 80, 4570 (1998)

q Input file: “name_data.txt”

Q
(Å–1)

Intensity
(bn sr–1 spin–1)

Error



Gd3Ga5O12 – Config file

q “name_config.txt”
q List of keywords

followed by values
q Keywords can be in any 

order



Gd3Ga5O12 – Fit
q Output file: “name_fit_01.txt”
q Calculate powder pattern over extended Q-range to check results 

“make sense”



Gd3Ga5O12 – Spins file
q Output file: “name_spins_01.txt”
q Spin orientations and metadata



Gd3Ga5O12 – Analysing the results
Single spins

q “Spinplot” program
Gd3+ site symmetry
from International Tables:



Gd3Ga5O12 – Analysing the results
Single spins

q “Spinplot” program
Gd3+ site symmetry
from International Tables:Planar Spin Fluctuations with a Quadratic Thermal Dependence Rate

in Spin Liquid Gd3Ga5O12

P. Bonville and J. A. Hodges
C.E.A., Centre d’Etudes de Saclay, Service de Physique de l’Etat Condensé, 91191 Gif-sur-Yvette, France

J. P. Sanchez and P. Vulliet
C.E.A., Centre d’Etudes de Grenoble, Service de Physique Statistique, Magnétisme et Supraconductivité, 38054 Grenoble, France

(Received 10 November 2003; published 23 April 2004)

The spin liquid properties of Gd3Ga5O12 have been examined using 155Gd Mössbauer spectroscopy
down to 0.027 K. Information has been obtained concerning both the directional properties of the short
range correlated moments and the thermal dependence of their spin fluctuation rates. Each Gd3! spin
(S " 7=2) is found to be confined to a plane and its fluctuation rate decreases from #2:8$ 109 s%1 at
0.4 K to #0:03$ 109 s%1 at 0.09 K following a close-to-quadratic thermal dependence.

DOI: 10.1103/PhysRevLett.92.167202 PACS numbers: 75.40.Gb, 75.50.Ee, 75.50.Lk, 76.80.+y

Magnetic systems with frustrated interactions have
received considerable interest in the past 20 years [1,2],
starting from the early work of Villain [3] concerning
magnetic interactions in a lattice of corner sharing tetra-
hedra. In such a lattice, Villain showed that nearest
neighbor antiferromagnetic interactions of Heisenberg
type do not lead to a long range magnetically ordered
state, and the system remains in a ‘‘cooperative paramag-
netic’’ or spin liquid state down to the lowest temperature.
The reason is that the interactions are geometrically
frustrated; i.e., it is impossible to simultaneously satisfy
all pairs of antiferromagnetic (AF) bonds. In addition to
the three-dimensional case (exemplified by the pyro-
chlores), frustration also arises in two-dimensional tri-
angular and kagomé lattices. Another arrangement which
can lead to frustration is the rare-earth (R) sublattice in
the garnets R3T5O12, where the R ions lie on two inter-
penetrating corner sharing triangular networks [4,5].
Actually, the only Heisenberg garnets are those contain-
ing Gd3! as this is a L " 0 ion and thus it has negligible
single ion anisotropy energy.

Early magnetic susceptibility measurements in
Gd3Ga5O12 [6] showed that it has a paramagnetic Curie
temperature of %2:3 K, indicative of AF interactions
between Gd ions. The specific heat [6] showed only a
broad hump near 0.8 K, and the absence of a sharp
anomaly indicated that long range magnetic order
(LRMO) was absent down to 0.35 K. It was later shown
that there is no LRMO in zero applied magnetic field
down to 0.025 K [7], and a spin-glass-like behavior was
evidenced below about 0.15 K [8]. Neutron scattering
measurements [9] evidence the development of very short
range AF exchange correlations below about 5 K. In the
presence of a magnetic field, Gd3Ga5O12 develops LRMO
with a complicated phase diagram [10,11].

The spin liquid state of Gd3Ga5O12 has been investi-
gated down to 0.025 K using muon spin relaxation (!SR)
spectroscopy [12,13], where the fluctuation frequency of

the electronic moments is obtained indirectly from the
analysis of the muon depolarization rate. The two !SR
studies gave rise to somehow different interpretations, but
both confirmed the absence of LRMO down to low tem-
peratures (to 0.025 K in Ref. [13]).

We present here a 155Gd Mössbauer spectroscopy
investigation of the low temperature properties of
Gd3Ga5O12, in zero magnetic field, down to 0.027 K.
Contrary to !SR measurements, Mössbauer spectroscopy
provides a direct access to the behavior of the electronic
moments since the coupling between the Gd3! electronic
moment and the probe (the Gd nucleus) involves the
hyperfine interaction which is fully known. For the iso-
tope 155Gd, the frequency window where the electronic
fluctuation rate can be measured is centered at about
109 s%1, the hyperfine Larmor frequency. In Gd3Ga5O12
at very low temperatures (below 0.09 K), we find that the
fluctuation rate is below the lower limit of the window
("LF ’ 3$ 107 s%1), and we obtain information concern-
ing the ‘‘static’’ properties, in particular, the directions of
the Gd3! moments (Fig. 1). Above 0.09 K, the relaxation
rate is measurable and we could follow its thermal de-
pendence up to 0.4 K. To our knowledge, this is the first
time that relaxation effects have been observed in 155Gd
Mössbauer spectra (Fig. 2).

Our polycrystalline sample was obtained by grinding a
high quality single crystal platelet, grown by the
Czochralski method at the Laboratoire d’Electronique
et des Technologies de l’Information at CEA-Grenoble.
In the garnet lattice (space group Ia!33d), the rare-earth
ions occupy the dodecahedral sites having orthorhombic
point symmetry (mmm) and there are six different ori-
entations of the site (24c) in the unit cell.

The 155Gd Mössbauer absorption measurements were
made down to 0.027 K in a 3He-4He dilution refrigerator
using a Sm&Pd3 source displaced with a triangular veloc-
ity sweep. For 155Gd, Ig " 3=2, Ie " 5=2, and E# "
86:5 keV. The spectrum at 4.2 K (Fig. 2) is a two line

P H Y S I C A L R E V I E W L E T T E R S week ending
23 APRIL 2004VOLUME 92, NUMBER 16

167202-1 0031-9007=04=92(16)=167202(4)$22.50 © 2004 The American Physical Society 167202-1

Bonville, Hodges, Sanchez & Vulliet, PRL 92, 167202 (2004)



Gd3Ga5O12 – Analysing the results
Spin correlations

q “Spincorrel” program

“Fourier
transform”



Gd3Ga5O12 – Analysing the results
Spin correlations

q “Spincorrel” program

“Fourier
transform”



Gd3Ga5O12 – Analysing the results
Single-crystal scattering

Data RMC
q “Scatty” program
q Average single-crystal calculation over 

>10 boxes
q Input file: scatty_config.txt

q Data at T = 0.175 K (D9, ILL)

Paddison, Acta Cryst A 75, 14-24 (2019)   



local spin distributions within each loop, and finding that—even though the

spins can point in any direction (subject to some XY-type anisotropy)—the

loop vectors point uniformly along the local z axis.

Remarkably, the loop correlation function

L(r) = 2h|L̂(0) · L̂(r)|i � 1 (7)

does not decay with distance for any of our configurations, indicating that

there is long-range order in the loop vectors.

7

L(r) =
1

10

X

n

cos(n⇡)Sn(r)

Gd3Ga5O12 – Going further
Collective effects

Paddison et al., Science 350, 179 (2015)



Ba2YRuO6 – Another example

Nilsen, Thompson, Ehlers, Marjerrison & Greedan, PRB 91, 054415 (2015) 
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DIFFUSE MAGNETIC NEUTRON SCATTERING IN THE . . . PHYSICAL REVIEW B 91, 054415 (2015)

FIG. 8. (Color online) Comparison between reconstructed single-crystal scattering for Ba2YRuO6 (left half) and the mean-field model (right
half) described in the text. Exchange parameters for the latter were (a) J1 = −1, J2 = −J1/2, J3 = 0, J4 = 0; and (b) J1 = −1, J2 = 3J1/8,
J3 = J1/4, J4 = 0.

neutron cross section in terms of spin pairs.

(
dσ

d"

)

mag
= Cµf (Q)2
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⎣ 2
3

+ 1
N
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i,j

Ŝ⊥
i · Ŝ⊥

j cos Q · Rij

⎤

⎦,

(2)

where Ŝ⊥
(i,j ) are the components of normalized spins i and j

perpendicular to Q, and Rij is the vector connecting them, and
then making the substitution

Ŝ⊥
i · Ŝ⊥

j = exp
[
−

∣∣Rz
ij

∣∣/ξz −
√(

Rx
ij

)2 +
(
R

y
ij

)2
/ξxy

]
, (3)

where ξz (ξxy ) are the correlation lengths along and perpen-
dicular to k = {(100),(010),(001)}. Evaluating the resulting
expression numerically for boxes of spins of dimension ≫

ξz(ξxy ) and for all three k domains leads to the right-hand side
of Fig. 9. In the top half, ξz = 25.2 Å and ξxy = 4.2 Å are
considered, whereas the lower panel shows ξz = 8.4 Å and
ξxy = 16.8 Å; the parameter sets selected are both roughly
compatible with the average correlation length extracted from
the full width at half-maximum of (100). Qualitative agreement
with the data at 45 K is good for the former scenario, i.e.,
essentially 1D antiferromagnetic correlations. This is in sharp
contrast to the interpretation of the diffuse scattering in [16],
where the asymmetric line shape of the (100) reflection in
Q was thought to reflect 2D correlations. The ferromagnetic
correlations ⊥k manifest as rods for (h00) and (0k0) even,
and they are also observed at 45 K. On heating further, these
rods first disappear before the pattern becomes more isotropic
beyond 70 K (Fig. 8).

054415-7

NILSEN, THOMPSON, EHLERS, MARJERRISON, AND GREEDAN PHYSICAL REVIEW B 91, 054415 (2015)

FIG. 9. (Color online) Comparison between the (hk0) plane scat-
tering reconstructed from the RMC fits to 45 K data (left) and the
numerically evaluated scattering in the same plane for (right, upper)
domains with ξz = 25 Å and ξxy = 4.2 Å, and (right, lower) domains
with ξz = 8 Å and ξxy = 16 Å.

We finally attempt to establish the connection between
the diffuse scattering in the (hk0) plane and the exchange
parameters of the system by way of a mean-field model
[27–29]. The Hamiltonian for this model may be written as

H = −1
2

∑

i,j

Jij (Rij )Si · Sj , (4)

where Si and Sj are classical Heisenberg spins on sites i,j
connected at distance |Rij | by Jij (Rij ) (note the sign of the
exchange). We have chosen to cut the latter off at a distance
of 12 Å, corresponding to the fourth coordination shell. The
spectrum of eigenvalues of this Hamiltonian, corresponding
to the various possible classical magnetic structures, may be
determined by first Fourier transforming, then diagonalizing
the interaction matrix Jij (q), where q is a vector in the first
Brillouin zone. The ground state is the mode that maximizes
J (q), and hence minimizes Eq. (2). Using the eigenvalues and
eigenfunctions determined in this way, the scattering cross
section for T > TN2 may be written as

(
dσ

d#

)

mag
= Cf (Q)2

∑

η,α

∣∣F η
⊥,α

∣∣2

3 − λ
η
q/TMF

, (5)

where Q = q + G, with G a reciprocal-lattice vector. The
superscript and subscript labels denote the α = (x,y,z) spatial
components of eigenvalue λ of index η. TMF is the mean-field
temperature of the calculation, here treated as an adjustable
parameter. The so-called mean-field structure factor in the
numerator is

F
η
⊥,α(Q) = F η

α (Q) − Q̂α

⎡

⎣
∑

β

Q̂βF
η
β (Q)

⎤

⎦ , (6)

where Q̂(α,β) are unit vectors along α,β = (x,y,z). Finally, the
Q-dependent part is

F η
α (Q) =

∑

i

u
η
q;i,α exp(−iG · Ri), (7)

where u
η
q;i,α is the α component of the eigenvector on site i

associated with eigenvalue λη, and the sum runs over all atoms
in the asymmetric unit. The general features of the scattering,
i.e., the rods of scattering perpendicular to (100) and the
differing T dependences of the (100) and (110) peaks, are well
reproduced for nearly all solutions with antiferromagnetic nn
coupling J1 and ferromagnetic nnn coupling J2 [Fig. 8(a)]. As
expected, these solutions correspond to the stability criterion
for the type I structure. Some features, such as the ring of
scattering evident at low Q in the high-T calculated patterns,
and the absence of scattering at (110) above 70 K, are, however,
less well described by these solutions. To ensure that these
differences are not a consequence of the RMC parameters, we
reconstructed the (hk0) scattering for a variety of box sizes and
weights. As we found relatively little variation with respect to
these, the discrepancies are likely due to other interactions in
the system; here, we focus on further neighbor couplings.

By including an antiferromagnetic third-neighbor coupling
J3 and changing the sign of J2 to antiferromagnetic (in
accordance with the GK prediction), both the low Q ring and
the form of the scattering at larger Q are well reproduced
[Fig. 8(b)]. The change of sign of J2 is furthermore consistent
with the negative antiferromagnetic nnn correlations observed
in our RMC fits at high temperature. Again, multiple solutions
for J3 < 0 and J2 < 0 give acceptable agreement with the data;
in Fig. 8, we show a comparison between the parameter set
J1 = −1, J2 = 3J1/8, J3 = J1/4, J4 = 0 and the experimental
data. Although J2 < 0 favors type II order, it is negated by a
relatively small J3 < 0, which has a strong effect by virtue of
the large number of neighbors z.

To place the comparison between the Monte Carlo and
mean-field datasets on a more quantitative footing, we compute
a quality factor χ2 =

∑
Q[σrc(Q) − σmf(Q)]2, where σrc (mf)

denote the reconstructed and mean-field cross sections, re-
spectively, for each set of parameters. The solution with J3 ̸= 0
yields a lower χ2 at all T ; at 45 K, χ2 for the J3 ̸= 0 set is 7.6,
while J3 = 0 gives 8.7. This difference increases to 10.4 (J3 ̸=
0) versus 31 (J3 = 0) at 70 K. While this strongly suggests the
presence of interactions beyond J2, powder averaging makes
it difficult to distinguish between the J3 ̸= 0 model and other
scenaria, including ring exchanges and anisotropies. As such,
an accurate microscopic picture will likely require an actual
measurement of the (hk0) plane from a single crystal, ideally
with energy analysis. Nonetheless, the foregoing treatment (as
well as [22]) illustrates how RMC can provide surprisingly
detailed information on 3D spin arrangements in disordered
magnetic systems.

III. SUMMARY AND CONCLUSIONS

Using polarized neutrons, the magnetic scattering cross
section for the highly frustrated double perovskite Ba2YRuO6
has been measured from 1.8 to 200 K over the range 0.4 <

Q < 3.9 Å
−1

. The type I fcc magnetic structure is confirmed at
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q Double perovskite structure (FCC magnetic lattice)
q Compare RMC results with J1-J2 spin Hamiltonian 
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Spinvert-3D – Single-crystal refinements

q “Spinvert-3D” for 3D refinements is available 
q Beta version – please let me know any bugs!

Paddison et al., PRB 97, 014429 (2018)



Spinvert-3D – Proof of principle
q Fit to simulated single-crystal data for a model frustrated magnet

(Heisenberg spins on pyrochlore lattice with AF interactions)
q First, fit to volume of reciprocal space (~500,000 data points)

I(Q)

1

0

〈200〉*
〈220〉*

(a)

(110)*
Exact RMC fit Exact RMC fit

(001)*

(b)



I(Q)

1

0

〈200〉*
〈220〉*

(a)

(110)*
Exact RMC fit Exact RMC calc.

(001)*

(b)

q Fit to simulated single-crystal data for a model frustrated magnet
(Heisenberg spins on pyrochlore lattice with AF interactions)

q Second, fit to only (110)* plane of reciprocal space

Spinvert-3D – Proof of principle



I(Q)

1

0

〈200〉*
〈220〉*

(a)

(110)*
Exact RMC fit Exact RMC calc.

(001)*

(b)
q Conclusion: Spinvert-3D works best with a large volume of data!

q Fit to simulated single-crystal data for a model frustrated magnet
(Heisenberg spins on pyrochlore lattice with AF interactions)

q Second, fit to only (110)* plane of reciprocal space

Spinvert-3D – Proof of principle



q Input file: “name_xtal_data.vtk”

q Visualization Toolkit (.vtk) format
Ø Readable in 3D display software, e.g. ParaView

Number of data points along each axis
Origin in reciprocal-lattice (hkl) units

Spacing in reciprocal-lattice (hkl) units

Spinvert-3D – Data file



Spinvert-3D – Paramagnetic MnO
q Rock-salt structure, antiferromagnetic TN = 118 K

Paddison et al., PRB 97, 014429 (2018)

2

FIG. 1: (a) Nearest-neighbour AFM interactions (J1) are frustrated
on the face-centred cubic lattice. (b) Next-nearest neighbour AFM
interactions (J2) are not frustrated and drive checkerboard ordering
of the simple cubic sub-lattices.

been restricted to either individual reciprocal-space planes
or the powder average, limiting the information content of
the scattering pattern.25 Advanced neutron-scattering instru-
ments now allow measurement of essentially-complete three-
dimensional (3D) diffuse-scattering patterns,26,27 but a key
problem remains: analysis of these very large datasets is usu-
ally computationally prohibitive.25 Here, we develop an ap-
proach to allow rapid refinement of an atomic-scale model
to magnetic diffuse-scattering datasets containing > 106 data
points. We demonstrate the success of this approach by fit-
ting to the complete 3D magnetic diffuse-scattering pattern
for MnO, allowing us to determine the relationship between
PM and AFM structures.

II. METHODS

Single-crystal neutron-scattering data were collected at
T = 160K (' 1.4TN and 0.3|✓|) using the SXD diffractome-
ter at the ISIS neutron source.26 The data were corrected for
instrumental background scattering by subtracting the scat-
tering intensity from an empty sample holder and were nor-
malised using the incoherent scattering from a vanadium stan-
dard. The crystal structure (space group Fm3̄m) was re-
fined to the nuclear Bragg intensities using the JANA software
package,28 using the lattice parameter a = 4.4344(7) Å ob-
tained from SXD at T = 160K. The data were binned in inter-
vals of 0.04 reciprocal-lattice units, the m3̄m diffraction sym-
metry appropriate for MnO was applied, and nuclear Bragg
peaks were removed by excising regions where the intensity
exceeded a threshold value (plus a small surrounding vol-
ume). A 3D representation of the experimental data is shown
in Fig. 2(a).

We employ reverse Monte Carlo (RMC) refinement14,29,30

to fit spin configurations to our neutron-scattering data. In
RMC refinement, a supercell of the crystallographic unit cell
is generated and classical spin vectors are assigned to each
site, whose orientations are refined to match experimental
data. We use a cubic supercell of side length R = 12a
(N = 6912 spins) with periodic boundary conditions. Re-
finements are initialised with random spin orientations and are

iterated to minimise a cost function

�2 =
X

Q

[sIcalc(Q) +B � Iexpt(Q)]2 , (1)

where I(Q) denotes the magnetic diffuse-scattering intensity
at reciprocal-space position Q, subscript “calc” and “expt”
denote calculated and experimental data points, s is a re-
fined intensity scale factor, and B is a refined flat-in-Q term
which corrects for the significant incoherent scattering from
Mn.31 Results from four separate refinements were averaged
to increase the statistical accuracy. The magnetic diffuse-
scattering intensity is calculated as

I(Q) / [f(Q)]2 exp(�UisoQ
2)

X

G

|F(G)|2 W (Q�G),

(2)
where f(Q) is the Mn2+ magnetic form factor,32 Uiso =
0.00509(9) Å2 is the isotropic atomic displacement factor for
Mn, and G is a reciprocal-lattice vector of the RMC supercell.
The magnetic structure factor

F(G) =
NX

i=1

S?
i exp (iG · ri) , (3)

where Si � [(Si ·G)G] /G2 is the projection of the spin lo-
cated at ri perpendicular to G. We use Lanczos resampling33

to interpolate values of |F(G)|2 at the experimentally-
measured Q-points by applying the weight function33

W (Q) =
Y

↵

sinc (Q↵R/2) sinc (Q↵R/2m) , (4)

where ↵ 2 {x, y, z} denotes Cartesian components, m is an
integer determining the interpolation accuracy, and W (Q) ⌘

FIG. 2: (a) Experimental magnetic diffuse-scattering data for para-
magnetic MnO at T = 160K. Nuclear Bragg peaks have been re-
moved from the data. (b) RMC fit to the experimental data shown
in (a). In (a) and (b), sections of the (101)⇤, (11̄1)⇤, and (001)⇤

reciprocal-space planes are shown. The (001)⇤ plane is shifted
by �0.5 reciprocal-lattice units along the [001]⇤ direction in order
to highlight the strongest diffuse scattering features; i.e., it is the
(h, k,� 1

2 )
⇤ plane. The centre of reciprocal space is indicated by

a white circle.

MnO, T = 160 K (> TN) data

SXD @ ISIS



Spinvert-3D – Paramagnetic MnO
q Exploit information content of 3D scattering data 

Paddison et al., PRB 97, 014429 (2018)
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FIG. 1: (a) Nearest-neighbour AFM interactions (J1) are frustrated
on the face-centred cubic lattice. (b) Next-nearest neighbour AFM
interactions (J2) are not frustrated and drive checkerboard ordering
of the simple cubic sub-lattices.

been restricted to either individual reciprocal-space planes
or the powder average, limiting the information content of
the scattering pattern.25 Advanced neutron-scattering instru-
ments now allow measurement of essentially-complete three-
dimensional (3D) diffuse-scattering patterns,26,27 but a key
problem remains: analysis of these very large datasets is usu-
ally computationally prohibitive.25 Here, we develop an ap-
proach to allow rapid refinement of an atomic-scale model
to magnetic diffuse-scattering datasets containing > 106 data
points. We demonstrate the success of this approach by fit-
ting to the complete 3D magnetic diffuse-scattering pattern
for MnO, allowing us to determine the relationship between
PM and AFM structures.

II. METHODS

Single-crystal neutron-scattering data were collected at
T = 160K (' 1.4TN and 0.3|✓|) using the SXD diffractome-
ter at the ISIS neutron source.26 The data were corrected for
instrumental background scattering by subtracting the scat-
tering intensity from an empty sample holder and were nor-
malised using the incoherent scattering from a vanadium stan-
dard. The crystal structure (space group Fm3̄m) was re-
fined to the nuclear Bragg intensities using the JANA software
package,28 using the lattice parameter a = 4.4344(7) Å ob-
tained from SXD at T = 160K. The data were binned in inter-
vals of 0.04 reciprocal-lattice units, the m3̄m diffraction sym-
metry appropriate for MnO was applied, and nuclear Bragg
peaks were removed by excising regions where the intensity
exceeded a threshold value (plus a small surrounding vol-
ume). A 3D representation of the experimental data is shown
in Fig. 2(a).

We employ reverse Monte Carlo (RMC) refinement14,29,30

to fit spin configurations to our neutron-scattering data. In
RMC refinement, a supercell of the crystallographic unit cell
is generated and classical spin vectors are assigned to each
site, whose orientations are refined to match experimental
data. We use a cubic supercell of side length R = 12a
(N = 6912 spins) with periodic boundary conditions. Re-
finements are initialised with random spin orientations and are

iterated to minimise a cost function

�2 =
X

Q

[sIcalc(Q) +B � Iexpt(Q)]2 , (1)

where I(Q) denotes the magnetic diffuse-scattering intensity
at reciprocal-space position Q, subscript “calc” and “expt”
denote calculated and experimental data points, s is a re-
fined intensity scale factor, and B is a refined flat-in-Q term
which corrects for the significant incoherent scattering from
Mn.31 Results from four separate refinements were averaged
to increase the statistical accuracy. The magnetic diffuse-
scattering intensity is calculated as

I(Q) / [f(Q)]2 exp(�UisoQ
2)

X

G

|F(G)|2 W (Q�G),

(2)
where f(Q) is the Mn2+ magnetic form factor,32 Uiso =
0.00509(9) Å2 is the isotropic atomic displacement factor for
Mn, and G is a reciprocal-lattice vector of the RMC supercell.
The magnetic structure factor

F(G) =
NX

i=1

S?
i exp (iG · ri) , (3)

where Si � [(Si ·G)G] /G2 is the projection of the spin lo-
cated at ri perpendicular to G. We use Lanczos resampling33

to interpolate values of |F(G)|2 at the experimentally-
measured Q-points by applying the weight function33

W (Q) =
Y

↵

sinc (Q↵R/2) sinc (Q↵R/2m) , (4)

where ↵ 2 {x, y, z} denotes Cartesian components, m is an
integer determining the interpolation accuracy, and W (Q) ⌘

FIG. 2: (a) Experimental magnetic diffuse-scattering data for para-
magnetic MnO at T = 160K. Nuclear Bragg peaks have been re-
moved from the data. (b) RMC fit to the experimental data shown
in (a). In (a) and (b), sections of the (101)⇤, (11̄1)⇤, and (001)⇤

reciprocal-space planes are shown. The (001)⇤ plane is shifted
by �0.5 reciprocal-lattice units along the [001]⇤ direction in order
to highlight the strongest diffuse scattering features; i.e., it is the
(h, k,� 1

2 )
⇤ plane. The centre of reciprocal space is indicated by

a white circle.

MnO, T = 160 K (> TN) data RMC fit

SXD @ ISIS



Spinvert-3D – Paramagnetic MnO
q Extract 3D model of domain structure in paramagnetic phase

Paddison et al., PRB 97, 014429 (2018)
See also mPDF: Frandsen et al., Phys. Rev. Lett. 116, 197204 (2016)
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0 outside the range �m < Q↵R/2⇡ < m. We take m = 4,
which allows the spin correlations to be calculated with ±1%
accuracy for 0  r↵  12 Å. Importantly, the computational
cost of updating I(Q) after a single spin rotation scales ap-
proximately linearly with the number of Q-points, and avoids
redundant calculations necessary in current approaches where
the supercell is divided into multiple “sub-boxes”.34,35 Our ap-
proach therefore allows rapid refinement of atomic-scale mod-
els to very large datasets (here, ⇡ 1.5⇥ 106 Q-points).

III. RESULTS

The RMC fit to neutron-scattering data is shown in
Fig. 2(b). Excellent agreement is achieved with the experi-
mental data (the weighted-profile R-factor Rwp = 8.3%). To
the best of our knowledge, this result represents the first time
that an atomistic configuration has been refined to a full 3D
I(Q) data set.

The spin Hamiltonian of MnO has previously been charac-
terised using inelastic neutron-scattering measurements in the
ordered AFM phase18 and diffuse-scattering measurements of
the (110)⇤ plane in the PM phase.23 A Heisenberg model with
AFM nearest and next-nearest neighbour exchange constants
J1 = �3.3K and J2 = �4.6K provides a good descrip-
tion of the diffuse-scattering data at T ⇡ 160K.23 As a check
on our RMC refinement, we simulated this J1-J2 model at
T = 160K using a direct Monte Carlo approach. Fig. 3(a)
compares the radial spin correlation function hS(0) · S(r)i
obtained from RMC refinement with the results for the J1-J2
model. The trend in the correlations is identical between the
two calculations; quantitatively, the difference in magnitude
of the next-nearest neighbour correlation value is 7%. The
spin correlation length ⇠ = 2.258(1) Å ' a/2 was obtained
by fitting exp(�r/⇠) to |hS(0)·S(r)i| over the set of distances
for which |hS(0) · S(r)i| is larger than at all longer distances.
We will come to show that local magnetic order persists over
a length-scale substantially larger than ⇠. Motivated by the
evidence from �-ray diffraction for a non-spherical distortion
of the d-electron density in the PM phase,36 we also calcu-
lated the distribution of spin orientations from our RMC re-
finements but observed no statistically-significant anisotropy
in the spin orientations. This result is consistent with the ob-
servation that the magnetic dipolar interaction is mainly re-
sponsible for magnetic anisotropy in MnO,37,38 but its strength
DS(S + 1) ⇡ 11K (Ref. 18) is much smaller than the ther-
mal energy at T = 160K. The results from RMC refinement
therefore agree closely with the J1-J2 Heisenberg model of
paramagnetic MnO, validating the methodology of 3D RMC
refinement.

Access to 3D spin configurations allows us to probe mag-
netic structure in more depth than given by radial spin correla-
tion functions alone. Our particular interest is in understand-
ing the relationship between the PM and AFM states in MnO.
The hS(0) · S(r)i function shown in Fig. 3(a) already hints
that the PM correlations do not simply resemble the AFM
correlations multiplied by a decreasing function of distance.
As expected from the relative magnitudes of J1 and J2, the

FIG. 3: (a) Radial spin correlation function hS(0)·S(r)i for MnO at
T = 160 K. Black bars show results for the J1-J2 model described
in the text and red diamonds show results from RMC refinement to
single-crystal magnetic diffuse-scattering data. The dashed grey line
shows the fit of an exponential envelope to the RMC |hS(0) ·S(r)i|,
which yields spin correlation length ⇠ = 2.258(1) Å. Grey squares
show the |hS(0) · S(r)i| values included in the fit. (b) 3D spin cor-
relation function hS(0) · S(r)i obtained from RMC refinement. The
figure shows the (xy0) plane (i.e., a cubic face). A square-root scale
is use to show the longer-range correlations more clearly. The crys-
tallographic unit cell is shown as a black box. (c) Schematic rep-
resentation of hS(0) · S(r)i for MnO in the PM phase. Red ar-
eas indicate FM correlations and grey areas AFM correlations. (d)
Schematic representation of hS(0) ·S(r)i for a single domain of the
ordered low-temperature AFM structure of MnO. (e) Schematic rep-
resentation of hS(0) ·S(r)i obtained for the AFM structure with the
point symmetry of the Mn site in the PM state applied.

strongest correlation is between next-nearest neighbours, for
which AFM interactions are not frustrated. However, signifi-
cant AFM correlation is present at the nearest-neighbour dis-
tance in the PM phase, whereas this correlation is exactly zero
for the ordered AFM state. This result implies that the ab-
sence of long-range order allows frustrated nearest-neighbour
interactions to be partially satisfied in the PM phase. In or-
der to assess the influence of the frustrated geometry on the
spin correlations, we consider the 3D spin correlation function
hS(0) · S(r)i. This function reveals the dependence of spin
correlations on the lattice geometry, which is expected to be
key in frustrated systems.39 Fig. 3(b) shows that a distinctive
pattern—hidden in the radial correlation function—emerges
in hS(0) · S(r)i. The hS(0) · S(r)i can be described as a set
of nested octahedral shells, with the sign of the spin correla-
tions alternating between FM and AFM for successive shells
as distance is increased [Fig. 3(c)]. As anticipated, this pat-
tern extends over length-scales much greater than ⇠. Hence,
taking each Mn atom in turn as the origin, Mn neighbours at
coordinates r/a = [x, y, z] are (on average) ferromagnetically

0
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12
rx/a

ry/a

l

spin correlations paramagnetic domains



q 3D diffuse-scattering patterns traditionally slow to calculate
Ø Many atoms/spins, many wavevectors
Ø Real-space processing (“sub-boxes”) employed to reduce noise
Ø Fast Fourier transform considered unsuitable

Ultrafast calculation of 3D diffuse scattering

Butler & Welberry, J Appl Cryst 25, 391 (1992)

water ice (110)* plane
DFT + sub-boxes



Ultrafast calculation of 3D diffuse scattering

water ice

Paddison, Acta Cryst A 75, 14-24 (2019)   

(110)* plane
DFT + sub-boxes

(110)* plane
FFT + filtering

q Accelerate 3D diffuse-scattering calculations using two results
Ø Average structure always periodic à FFT can be used
Ø Nyquist theorem à complete scattering pattern can be 

reconstructed from supercell Bragg intensities



Ultrafast calculation of 3D diffuse scattering

water ice

Paddison, Acta Cryst A 75, 14-24 (2019)
Roth et al, IUCrJ 5, 410 (2018)   

(110)* plane
DFT + sub-boxes

(110)* plane
FFT + filtering

q Accelerate 3D diffuse-scattering calculations using two results
Ø Average structure always periodic à FFT can be used
Ø Nyquist theorem à complete scattering pattern can be 

reconstructed from supercell Bragg intensities
paddisongroup.wordpress.com/software
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Useful info

paddisongroup.wordpress.com/software
email: jamp3@cam.ac.uk or paddison@gatech.edu

Software references: 
Spinvert: Paddison, Stewart, and Goodwin, JPCM 25, 454220 (2013)
Scatty: Paddison, Acta Cryst A 75, 14-24 (2019)   

Examples of use:
Paddison et al., Nature Commun. 7, 13842 (2016)
Paddison et al., Science 350, 179 (2015)
Nilsen et al., Phys. Rev. B 91, 054415 (2015)
Saines et al., Materials Horizons 2, 528 (2015)
Paddison et al., Phys. Rev. B 90, 014411 (2014)

mailto:jamp3@cam.ac.uk
mailto:paddison@gatech.edu


Bonus – Absolute powder data normalization

Three steps
1) Rietveld (Fullprof) refinement to nuclear profile 

to determine refined scale factor, FullprofScale
2) AbsScale = FullprofScale×MagicNumber
3) NormalizedData = RawData/AbsScale

The small print: Assumes absorption, preferred orientation, and 
other special intensity corrections not included in Fullprof model. 
Also, site occupancy Occ = (occupancy of special 
position)/(occupancy of general position).

Rodríguez-Carvajal, Physica B 192, 55 (1993)



Bonus – Fullprof “magic numbers”

Constant-wavelength diffraction

Time-of-flight diffraction

MagicNumber =

MagicNumber =

2⇡2NV

45�3

where N is number of spins per unit cell, V is unit-cell volume in 
A3, and ƛ is neutron wavelength in A.

4⇡NV sin ✓

DIFC
where θ is scattering angle of detector and DIFC (sometimes 
called dtt1) is instrument parameter relating to TOF in µs to d-
spacing in A.

(to normalize intensity in units barn sr–1 spin–1)


