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Outline

Issues with measurement of structure

Neutron diffraction with H/D isotope substitution
at a reactor source

Oxygen substitution

Down in T (ice)




Water issues

« X-rays scatter from electrons

— H electron displaced towards O

« Mass of neutrons ~ mass of proton

— Large inelastic scattering

* D has twice the mass of H
— H,0 & D,0 truly isostructural?




NDIS (in principle)

Measure at least 3 total structure factors for water
with different H/D ratios

— b, =-3.7406(11) fm, by, = 6.671(4) fm, by = 5.805(4) fm
Combine to calculate 3 partial structure factors

Or: mix H,0O & D,0 to obtain b.,- =0

— Measure Sy5(q) directly

Or: mix H,0O & D,0 to obtain b.- = b,

— Measure S\, (q) directly




Neutron Diffraction Experiment

Detection

Array of 9 Plane
Microstrip B,
Detectors

Shielding

Monochromator

Primary
Shutter
)

\ Vertical Evacuated £
Slits  \ Sample Chamber

~__ Neutron Sample
Beam Monitor it

Secondary
Shutter

Intensity measured as function of angle at fixed wavelength

B 47rsin(6’)
2

G




..___

/ |
_ /|
R N

™ o o :
ureq / (©p/(b)op)

\...

/

/)

-
O
=
O
©
-
=
A
p -
)
e
=




cC -
et
o
Q0 -
-
= -
~—
L

05 Af\/\,/\wﬂq)-o.ebam
] *F(q) -0.8 barn

Water Diffraction
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*2G(r) -0.9 barn
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Use SVD method to get partials




Partials
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Neutron Diffraction Experiment

« The structure of water at the partial structure factor
level had so far only been investigated using H/D
substitution
Use of oxygen isotope substitution should eliminate
main effects due to inelastic scattering in NDIS
experiments
The difference in structure between H,O and D,O
can be investigated by calculating suitable difference
functions




Why Is there a need for more ND
experiments on H,0/D,07?

» Differences in structure and dynamics of H,O vs. D,O (due
to quantum effects) lead to e.g. changes in melting/boiling
point, temperature of maximum density, interactions with
biological systems

There exists no purely experimental measurement on the
difference between the O-H and O-D bond lengths in liquid
water

Much cited PRL* that models a combination of x-ray and
neutron data finds O-H bond to be ~ 3 % longer than O-D
bond (larger than any theoretical prediction)

* AK Soper and CJ Benmore (2008) PRL 101 065502



Measured
- DznatO and D218O
— H,"0 and H,%0

Wavelength of ~0.5 A
0.35<g/A1<235
b, .. = 5.805(4) fm
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NDIS experiment

Differential scattering cross-  Differential scattering cross-
sections for D,"&0O and sections for H,"&0O and

D,1%0 H,180

1.0+
0.9 -
0.8

0.7—-
0,6—.
0.5—-
0.4—-

do(@)/dQ2 / barn
do(g)/dQx / barn

0.3
0.2

0.1
0 2 4 6 8 10 12 14 16 18 20 22 24

g/ A’

dof(q)







Reciprocal space first order
difference functions

o after residual inelasticity correction
AP(q) = a + bg? + cg*
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Real space first order difference
functions
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lop = 0.985(5) A
rop = 0.990(5) A
Difference ~ 0.5 %

First time ever this
was measured.
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Comparison with TTM3-F model
simulation

PIMD simulations take into account quantum effects
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TTM3-F model

Polarisable & flexible

Reproduces accurately O-H stretch region of IR absorption spectrum of
liquid water as well as its diffusion coefficient

Supports “competing quantum effects model”

— Inter-molecular zero point energy and tunnelling weaken hydrogen
bond network

— Quantum fluctuations in anharmonic intra-molecular O-H bond
increase its length and hence the dipole moment of molecule which
increases binding between molecules (i.e. strengthens network)

— Net effect is much smaller than originally suggested from rigid water
simulations




Conclusions (O substitution)

Oxygen isotope substitution in ND Is feasible and can be
applied to measure liquid and glassy oxide materials

First entirely experimental evaluation of the difference in
O-H and O-D bond lengths in liquid water

Intra-molecular difference in bond length ~ 0.5 %
So H/D substitution is valid for ambient water

Path integral molecular dynamics simulations using TTM3-
F model for water agree best with our diffraction results

Results support a “competing quantum effects model” for
water




THIS WEEK

Quantum weirdness

makes life possible

Lisa Grossman

WATER’S life-giving properties
exist on a knife-edge. It turns out
that life as we know it reliesona
fortuitous, but incredibly delicate,
balance of quantum forces.

Water is one of the planet’s
weirdest liquids, and many of its
most bizarre features make it life-
giving. For example, its higher
density as aliquid than as a solid
means ice floats on water, allowing
fish to survive under partially
frozenrivers and lakes. And unlike
many liquids, it takes a lot of heat
towarm water up even a little, a
quality that allows mammals to
regulate their body temperature.

But computer simulations
show that quantum mechanics
nearly robbed water of these life-
giving features. Most of them
arise due to weak hydrogen bonds
that hold H,O molecules together
in a networked structure. For
example, it is hydrogen bonds
that hold ice molecules in a more
open structure than in liquid
water, leading to alower density.
By contrast, without hydrogen
bonds, liquid molecules move
freely and take up more space
thaninrigid solid structures.

Yet in simulations that include
quantum effects, hydrogen bond
lengths keep changing thanks to
the Heisenberg uncertainty

T —

principle, which says no molecule
can have a definite position with
respect to the others. This
destabilises the network,

“It breaks down big
ime,” says Philip Salmon of the
ity of Bath in the

tra bulk makes it less vulneraiig
to quantum uncertainties. “It’s like
turning the quantum mechanics
half off,” says Chris Benmore, of

e Argonne National Laboratgs
in [11Teieay irOlved
in the study.

S

A /EPA/CORBI

JON HURS




lce (outline)

« Amorphous ice and its various forms
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Phase diagram
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Amorphous ice (Syy)

—— VHDA
—— HDAS5
HDA107
——HDA115
LDA
—— Water
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Transformations
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Partials (reciprocal)
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Partials (real)




Summary (amorphous ice)

3 forms of amorphous ice
Transition LDA — HDA first order like
Transition HDA — VHDA continuous

Local bonding arrangement (water molecules
connected via H-bonds) remains intact

O coordination increases with density
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Totals (ice Ih)




Totals (ice Ih)
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Comparison with crystallography

1 (a) O-O correlations
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Bonding geometry
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15 K 160.1(4.4) °
123 K 177.2(2.4) °




Comparison with amorphous ice

ice-1h
—LDA 1ce




Comparison with amorphous ice

Ice-lh

LDA ice
—Water H'D

Water O-18

Water L. Skinner




Conclusions

- Diffraction results agree with crystallography

* O-H--O bond angle was determined
- 15K 160.1(4.4) °
- 123K 177.2(2.4) °

« Diffraction patterns of LDA ice and ice |h are very
similar
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