D3 at the ILL:

Structural studies of hydrogenous liquid and amorphous systems using polarised neutrons

Anne Stunault Gabriel Cuello Sébastien Vial

What for: Hydrogen

Isotope	coherent σ (barn)	spin-incoh. σ (barn)	coherent b (10 ⁻¹² cm)
¹ H	1.7583	80.27	-0.3739
² H (D)	5.592	2.05	0.6671

Incoherent background from Hydrogen

Why bother?

Neutrons DO see the hydrogen (very well!)

Hydrogen bond Isotopic substitution (partial distributions) No deuteration

- difficult to impossible
- industrial applications
- geological studies

Scope

What for ? Why polarised neutrons? How? Some results Intensit What next? (20)

A. Stunault, ADD2019, Mar 17-22, 2019

Why: nuclear spin

Nuclear spin:

$$I ({}^{1}H: I = {}^{1}/_{2})$$

Nucleus + neutron spin:

- $I + \frac{1}{2}$: $2(I + \frac{1}{2})+1 = 2I+2$ states, scattering length b^+
- $I \frac{1}{2}$: $2(I \frac{1}{2}) + 1 = 2I$ states , scattering length b^-

Unpolarised beam scattering probabilities (randomly oriented nuclear spins)

$$f_{+} = \frac{I+1}{2I+1}$$
 $f_{-} = \frac{I}{2I+1}$

$$\left(\frac{d\sigma}{d\Omega}\right)_{nuclear-spin-incoherent} = \frac{\left(b^{+}-b^{-}\right)^{2}I(I+1)}{\left(2I+1\right)^{2}}$$

¹H: b^+ = 1.04 x 10⁻¹² cm, b^- = 4.744 x 10⁻¹² cm

Polarised neutron scattering

from randomly oriented nuclear spins

W.G. Williams, Polarized Neutrons, Clarendon, 1988

Polarised neutron scattering

from randomly oriented nuclear spins

$$\begin{split} I_{spin-incoherent}(Q): 1/3 non - spin - flip \\ 2/3 spin - flip \\ I_{coherent}(Q) \text{ or } I_{isotope-incoherent}(Q): non - spin - flip \end{split}$$

$$I_{coh}(Q) + I_{isotope-incoh}(Q) = I^{NSF}(Q) - \frac{1}{2}I^{SF}(Q)$$
$$I_{spin-incoh}(Q) = \frac{3}{2}I^{SF}(Q)$$

Directly remove spin-incoherent background

Why now?

The technique is far from new D7 at ILL Cold neutrons $\lambda_{min} = 3.12$ Å, $Q_{max} = 3.91$ Å⁻¹

Wider Q-range: hot neutrons D3 at ILL: $\lambda_{min} = 0.4 \text{ Å}$, $Q_{max} = 25 \text{ Å}^{-1}$

Polarisation?

Sample container

Si crystal: calibration of the polarisation

Double walled Vanadium sample cell

Sample volume In beam: 0.4 cm³

Measurement

Lactulose: (F. Ngono, ILL thesis, F. Affouard, Univ. Lille, G. Cuello, M. Jimenez Ruiz, ILL)

> Possible excipient Pharmaceutical industry

Scan, scan, scan....

Data reduction: spin filters

Filter 1: Transmission (monitors)

Data reduction: spin filters

Filter 1: Transmission (monitors)

Filter 2: Polarisation (crystal)

Water, analysis

Lactulose: polarised vs unpolarised

Complementarity with D7 (cold neutrons)

ILL Endurance project → September 2019

Cu monochromator

FOR SOCIET'

Propanol

Propanol, (Rodriguez-Palomino, Dawidowsky, Cuello, Phil. Mag. 2015)

(Monte Carlo, based on Granada's "synthetic model", PRB 1985)

INSTITUT MAX VON LAUE - PAUL LANGEVIN

A. Stunault, ADD2019, Mar 17-22, 2019

Upgraded instrument: September 2019

Extraction of "clean" S(Q) from measured I(2θ) and calibration/background measurements (*cf. G. Cuello's talk at the school*)

Multiple scattering...

D3: a unique instrument for the study of liquid/amorphous systems with high ¹H contents

Complementary to unpolarised instruments (D4)

Complementary to cold neutron polarised instruments (D7, DNS)

We will soon do even better with a multidetector

Extraction of "clean" S(Q) in progress

