

A RENEWED APPROACH OF UO₂ NUCLEAR FUEL USING PDF ANAYSIS

MRS EN 17 L. Desgranges, 1 Y. Ma1, Ph. Garcia1, G. Baldinozzi1, D. Siméone1, H.E. Fischer2 1 CEA, DEN France

² ILL, France

ı.fr APRIL 6, 2018

www.cea.fr

ADD2019 | March, 2019

PAGE 2

UO₂ BEHAVIOUR UNDER IRRADIATION

Energy production by Fission

Thermal gradient
Oxygen transfer
Irradiation damage
Fission product incorporation

BUT A STABLE CRYSTALLINE STRUCTURE

A simple picture of UO₂ (used in thermodynamic modelling J. Nucl. Mater.419 (2011) 145-167):

- One crystalline structure
- Three sites: 1 cationic, 1 anionic, 1interstitial
- Different occupation fractions on each site

A TOO SIMPLIFIED PICTURE?

In the last 15 years, PDF analysis of UO₂ was used to improve the understanding of nuclear fuel behavior.

The obtained results contributed in proving that the ideal solid solution picture was oversimplified.

Example 1

UO₂ oxidation

UO2 OXYDATION: A INDUSTRIAL HAZARD

In an accidental scenario, a defect in the cladding might put UO₂ irradiated fuel in contact with atmosphere (T<400°C)

Need for a better understanding of UO₂ oxidation

$$UO_2 \Rightarrow U_4O_9 \Rightarrow U_3O_7 \Rightarrow U_3O_8$$

ADD2019 | March, 2019

Nucl. Techn 163 (2008) 252-260

COO U4O9 CRYSTALLINE STRUCTURE: AN OLD BRAIN TEASER!

- 1961 : first U₄O₀ observation using X-Ray Diffraction
- 1964 : U₄O₉ observation using neutron diffraction
- 1968 : U₄O₉ observation using electron diffraction
- 1960-1980 : evidence of α - β transition at 50°C
- First simple structural models simples : I-43d (1961) I4₁32 (1974)
- 1980 structural models using clusters of of oxygen atoms
- \blacksquare 1989 : determination β phase space group, I-43d
- 2004 : first structural refinement of β-U₄O₉ using Rietveld analysis
- **2005**: EXAFS measurements of α -U₄O₉
- **2006**: First PDF measurement of α -U₄O₉
- **2011**: first structural refinement of α -U₄O₉ using PDF analysis
- 2016 : first structural refinement of γ-U₄O₉ using PDF and Rietveld analysis

why so many difficulties?

DIFFICULTIES FOR SOLVING U₄O₉ STRUCTURE

An heavy cation near to a light anion

Atom	$\sigma_{ extsf{X-Ray}}$	$\sigma_{ m neutron}$
0	0.64	4.232
U	84.85	8.906

neutron diffraction mandatory to evidence O atoms

More than 100 parameters to be refined

 β -U₄O₉ is a UO₂ superstructure 4x4x4 (a = 21.766 Å), 21 independent atoms

► <u>a large data set mandatory with numerous diffraction lines</u>

Need for local details

U₄O₉ contains clusters of oxygen interstitial

► <u>PDF analysis mandatory for the short interatomic distance determination</u>

CONEUTRON DIFFRACTION WITH URANIUM OXIDES AT D4, ILL

A two UO₂ pellet stack set in a airtight glass tube

Installed inside the sample holder of D4 furnace

Data analyzed in reciprocal and real space

ADD2019 | March, 2019

| PAGE 10

DATA ANALYSIS

Figure 2. α - U_4O_9 neutron diffraction pattern corrected from air and sample holder diffusion.

10

r(A)

30

40

50

20

| PAGE 11

U₄O₉ AVERAGE STRUCTURE

Inorg. Chem. 48 (2009) 7585-7592

CUBOCTAEDRON IN α-U₄O₉

PDF refinement:

- Confirmed the existence of a the central oxygen
- Evidence the cuboctahedron as seed for higher oxide formation

Inorg. Chem. 50 (2011) 6146-6151

PHASE TRANSITION IN U₄O₉

PDF INTERPRETATION OF CHANGE IN SHAPE

β -U₄O₉:

- A nearly symmetric packing
- No difference between U6 an U7
- Steric interactions are dominant

γ -U₄O₉ :

- Asymmetric packing
- U atoms with no UO bond shorter that 2.2Å, (U⁴⁺)
- U atoms with UO bond shorter that 2.2Å, (U⁵⁺)
- U6 (5+) are connected to the cuboctahedron by short bonds (in green)
- Coordination interactions are dominant

FIRST CONCLUSION UO₂ OXIDATION

Oxygen incorportation in UO₂ proceeds by the formation of oxygen interstitial clusters

This conclusion is valid for a wide range of U-O phase diagram

Ma et al, Inorg, Chem. 57 (2018) 7064-7076

Example 2

UO₂ at high temperature

HIGH TEMPERATURE: ACCIDENTAL SCENARII

Temperature change in the case of a LOCA scenario as a function of time.

The behavior of UO₂ at high temperature has to be known

No change in UO₂ crystal symmetry is expected

BUT!

The U-O distance in UO₂ measured by X-Ray diffraction and PDF analysis is not consistent with Fm-3m crystalline structure

Skinner et al. <u>Science.</u> 2014 Nov 21;346(6212):984-7

A change in UO₂ local symmetry at high temperature ???

⇒ New experiments using neutron diffraction in order to probe O-O distance that are not visible using X-Ray diffraction

NEW EXPERIMENTAL DATA

Several diffraction patterns of UO₂ pellets measured from RT to 1000°C

EVIDENCE OF OXYGEN DISORDER

WHAT DOES PDF SAYS

Regular Fm-3m structure does not reproduce well short distance distribution

Consistent with oxygen disorder

A FIRST ATTEMPT TO DESCRIBE LOCAL ORDER

A lower symmetry structure, Pa-3, a Fm-3m subgroup having 2 short, 6 long UO and a single OO bound lengths,

fits local order better, but no more long range order

HOW TO LINK LOCAL AND LONG RANGE ORDER?

Putting domains having different orientations the ones next to the others is not enough.

Modeling box with 5 UO₂ cells and 2 domains

SYMMETRY CONSTRAINTS ARE NEEDED!!

Chem. Eur. J. 2018, 24, 2085 - 2088

Best fit with Pa-3 nm size domain separated by coherent interfaces (compatible with average Fm-3m)

Consistent with the absence of additional diffraction lines

ADD2019 | March, 2019

WHAT DOES IT MEAN?

Rietveld or PDF fits are only mathematical descriptions of the actual atomic distribution. More physics is needed for interpretation.

A static or dynamic disorder?

 Diffraction (whether Rietveld refinement or PDF-analysis) cannot distinguish between static versus dynamic disorder, unless data are taken as a function of temperature.

Domains or somethings else?

Moving interfaces are also possible

The link with kinetic data would be helpful:

What are the dynamics inside UO₂ at high temperature that could be related to oxygen motion?

FIRST CONCLUSION UO2 AT HIGH TEMPERATURE

At least dynamically, at high temperature, the local symmetry of UO₂, Pa-3, is lower that the regular Fm-3m regular symmetry of UO₂

Shorter UO bond length that are observed by EXAFS, X-ray and neutron diffraction Is consistent with this lower local symmetry

GLOBAL CONCLUSION

For UO₂, the assumption: "one crystalline structure, three sites: 1 cationic, 1 anionic, 1 interstitial, and different occupation fractions on each site" is oversimplified.

The understanding of UO₂ modification by irradiation requires a description at the local scale

- 2 perspectives:

- A new approach for the understanding of irradiated UO₂
- A more general approach of « simple » oxides

Thank You for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache | 13108 Saint-Paul lez Durance Cedex DEN DEC SA3E