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Empirical Potential Structure Refinement

A computational method developed by Dr Alan Soper FRS, for
building atomic and molecular models of structurally disordered
systems, that are consistent with neutron and x-ray scattering data,
and known physical/chemical constraints.
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EPSR # Computer simulation

Computer “simulations allow us to develop and test models, to
evaluate approximate theories of liquids, and to obtain detailed
Information about the structure and dynamics of model liquids at the

molecular level.” Computer Simulation of Liquids, M.P.Allen and
D.J.Tildesley (Clarendon Press, Oxford 1987)

EPSR allows us to build atomistic models of real liquids (and
glasses and complex nanoscale systems) that have been
characterized by neutron or X-ray scattering methods, and to test
the consequences of our underlying assumptions via refinement
against experimental observables.
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EPSR is built on a Monte Carlo simulation engine

Its ingredients are:

(1) A computer representation of a box of atoms and molecules — essentially a
store of coordinates.

(2) A set of potential energy functions to model the interactions between the
atoms and molecules in the box.

(3) A set of rules by which the atoms, molecules, functional groups within the
model are moved e.qg.

(a) Atomic translations

(b) Molecule translations

(c) Molecule rotations

(d) Molecule functional group rotations

(e) Torsional operations on molecules etc.

(4) A set of tools to interrogate the development of the interatomic and
intermolecular structures that the model will produce.
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EPSR method

Classical and Experimental Data
Molecular mechanics Neutron Diffraction
(Empirical force fields) (Nuclear correlations)

X-ray Diffraction
(Electron density
correlations)

Atomic Interaction Potentials EXAFS Spectroscopy
- - (Chemically specific

electron density)

Atomistic modeling engine => Value of the resulting model is limited
by the information content of the
Metropolis Monte Carlo experimental data
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The total potential runs and EPSR refinement
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The result of performing an EPSR refinement

Refining a reference potential model against scattering data drives the
calculated structure factor of the model towards improved agreement with the
experimentally measured function.
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The total potential runs and EPSR refinement
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The total potential runs and EPSR refinement
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EPSR is designed to function with both atoms and molecules

Molecules are defined using distance constraints

i Within EPSR, molecules are defined
N } 3 - by a criterion for the distances
/ ' between first and second neighbour
atoms. These two distances
effectively constrain the angles.

For simplicity, the builder programs
also allow you to specify the
molecular structure in terms of first
neighbour distances and angles.

Jmol
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Molecules are flexible to account for observed disorder
(and consequently every molecule in the model is slightly different)
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Molecules are flexible to account for observed disorder
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INPUT

Experimental data
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Understanding the limits of what can safely concluded from
disordered materials diffraction data

Does liquid or amorphous system diffraction data always
support the construction of a completely defined and unique structural model?

The informative case of vitreous B,O,

Does vitreous B,O, contain a significant fraction of B;O, ring structures?

Raman scattering and NMR suggest ring fractions of = 70%

Neutron and X-ray scattering models suggest < 20%
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EPSR used as a hypothesis testing framework

J. Phys.: Condens. Matter 23 (2011) 365402 A K Soper

(b) Revised Model 2

(a) Model 1

6% of boron in boroxyl rings 75% of boron in boroxyl rings
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EPSR used as a hypothesis testing framework

Model 1: 6% of boron in boroxyl rings

I. Phys.: Condens. Matter 23 (2011) 365402 A K Soper
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EPSR used as a hypothesis testing framework

Model 1: 75% of boron in boroxyl rings

I. Phys.: Condens. Matter 23 (2011) 365402 A K Soper
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EPSR used as a hypothesis testing framework

For the case of vitreous B,0O;, the pair correlation sensitivity of diffraction
techniques is insufficient to answer the question on ring structures. Such
structural motifs not uniquely defined by atomic pair-correlations alone.

EPSR has been used to show that two structurally distinct models are equally
capable of reproducing the experimental structure factors.

Information from independent experiments is necessary to resolve the issue.

This uniqueness challenge is often most acute when attempting to model
atomic materials. This is because every building block (atom) is spherical and
displays no directional preferences.

Molecular materials are frequently easier systems to robustly model as the
building blocks have distinct shapes and favoured connectivities that place
constraints on how the many-body interactions between the atomic sites can
be resolved for a given system density.
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Recent applications of EPSR

Example 1: The structure of Deep Eutectic Solvents

A salt [A]*[B]- mixed with a molecular species [C]
Eg: choline chloride-urea (ChClI-Urea)
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Temperature (°C)

DES can be more environmentally friendly than common ionic liquids (ie. ChCI:U)

DES allow us to design the solvent to be more than a spectator
0O.S.Hammond, K.J.Edler, D.T.Bowron and L.Torrente-Murciano, Nature Comms (2017) 8 14150

DES for solvothermal synthesis of
nanoparticulate CeO,

140

100

HC, CO, NOx
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GDwCh Communications Angewandte

. International Edition: DOI: 10.1002/anie.201702486
@ Deep Eutectic Solvents Very Important Paper German Edition: DOI: 10.1002/ange.201702486
‘ The Effect of Water upon Deep Eutectic Solvent Nanostructure: An
\\K Unusual Transition from Ionic Mixture to Aqueous Solution

© Oliver S. Hammond, Daniel T. Bowron, and Karen J. Edler*  Angew. Chem. Int. Ed. 2017, 56, 9782 —9785
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GDCh

L Communications AngSydie

Internatic Ch emie

. International Edition: DOI: 10.1002/anie.201702486
@ Deep Eutectic Solvents Very Important Paper German Edition: DOI: 10.1002/ange.201702486
‘ The Effect of Water upon Deep Eutectic Solvent Nanostructure: An
\\K Unusual Transition from Ionic Mixture to Aqueous Solution

© Oliver S. Hammond, Daniel T. Bowron, and Karen J. Edler*  Angew. Chem. Int. Ed. 2017, 56, 9782 —9785

—@— Choline-Water At low levels (s1w), water contributes slightly to (rather than
20 { | =O— Urea-Water disrupting) the hydrogen-bonding network, and strengthens

—w¥— Chloride-Water choline—urea bonding. This alters the structure enough that it

—&— Water-Water is important for the water content of DES to be characterized.

Between 2w and 10w, the DES—water mixture is in a regime
where DES clusters still exist, but are separated by the
diluent. DES intermolecular bonding persists as far as 10w
because of the solvophobic sequestration of water into
nanostructured domains around choline. At 15w, we observed
a step change in solvation where many of the DES structural
motifs cease to be prevalent as water clusters become
unfavorable. At this point, the system is best described as

A an aqueous solution of DES components at the molecular
level.
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Example 2a: The structure of MCM-41

Density profile of nitrogen in cylindrical pores of MCM-41
A.K.Soper and D.T.Bowron

Chem. Phys. Lett. 683 529-535 (2017) UK Research
Science & Technology

@ Facilities Council and Innovation



EPSR refined model of MCM-41
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Density profile of nitrogen in cylindrical pores of MCM-41
A.K.Soper and D.T.Bowron

Chem. Phys. Lett. 683 529-535 (2017) UK Research
Science & Technology

@ Facilities Council and Innovation



Example 2b: MCM-41 vapour loaded with liquid benzene

Confinement Effects on the Benzene Orientational Structure
Marta Falkowska, Daniel T. Bowron, Haresh Manyar, Tristan G. A. Youngs
and Christopher Hardacre
Angew Chemie Intl. Ed. Engl. 57 4565-4570 (2018)
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EPSR model of benzene confined in MCM-41
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Confinement Effects on the Benzene Orientational Structure
Marta Falkowska, Daniel T. Bowron, Haresh Manyar, Tristan G. A. Youngs
and Christopher Hardacre

Angew Chemie Intl. Ed. Engl. 57 4565-4570 (2018)
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Radial distribution function of benzene within an MCM-41 pore
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Radial distribution functions between molecular centers for benzene-d;
confined in MCM-41 (dashed line). Solid line represents the radial distribution
function for the bulk liquid.

Confinement Effects on the Benzene Orientational Structure

Marta Falkowska, Daniel T. Bowron, Haresh Manyar, Tristan G. A. Youngs
and Christopher Hardacre

Angew Chemie Intl. Ed. Engl. 57 4565-4570 (2018)
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Cylindrical distribution of benzene within an MCM-41 pore
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Cylindrical distribution of benzene centres as a function of pore radius and running
coordination number in a 4A slice along the length of the pore.

Confinement Effects on the Benzene Orientational Structure

Marta Falkowska, Daniel T. Bowron, Haresh Manyar, Tristan G. A. Youngs
and Christopher Hardacre

Angew Chemie Intl. Ed. Engl. 57 4565-4570 (2018)
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Benzene-benzene orientational correlations within an MCM-41 pore
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Confinement Effects on the Benzene Orientational Structure

Marta Falkowska, Daniel T. Bowron, Haresh Manyar, Tristan G. A. Youngs
and Christopher Hardacre

Angew Chemie Intl. Ed. Engl. 57 4565-4570 (2018)
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Orientational distribution of benzene within an MCM-41 pore
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Conclusions: Structure of benzene in MCM-41

(1) The distribution of molecules across the pore diameter displays well
defined layering of the absorbed molecules.
(2) The confinement of the benzene molecules induces changes in the local
ordering when compared with the bulk liquid structure:
At short benzene-benzene distances (<4.85A) the benzene molecules
favour rr-stacking
- At slightly longer distances (4.85A — 7.90A) the confined benzene-
benzene correlations favour T-configurations (H towards ring centre)
over Y-configures found in the bulk (H towards delocalized -
electrons).

(3) The interaction of benzene molecules with the inner silica-surface of the

MCM-41 pore favours a canted configuration with the benzene molecules
oriented at an angle of ~40° between the ring-plane and the wall surface.

Confinement Effects on the Benzene Orientational Structure

Marta Falkowska, Daniel T. Bowron, Haresh Manyar, Tristan G. A. Youngs
and Christopher Hardacre

Angew Chemie Intl. Ed. Engl. 57 4565-4570 (2018)
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Example 2c: Loading fluids into nanoporous materials: N, into MCM-41
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Density profile of nitrogen in cylindrical pores of MCM-41
A.K.Soper and D.T.Bowron
Chem. Phys. Lett. 683 529-535 (2017)
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Example 2c: Loading fluids into nanoporous materials: N, into MCM-41
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Density profile of nitrogen in cylindrical pores of MCM-41

A.K.Soper and D.T.Bowron
Chem. Phys. Lett. 683 529-535 (2017)



Orientation of N, molecules layered inside MCM-41
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Conclusions: Adsorption of N, in MCM-41

(1) Before the onset of capillary condensation of nitrogen into MCM-41
the gas is strongly adsorbed in distinct layers inside the pore
space.
(2) Each layer of nitrogen has a strong orientational configuration
* The layer of N, molecules closest to the silica surface prefers to
lie flat with the long-axis of the molecule parallel with the
surface.

« The second layer of N, molecules favours a configuration where
the long-axis of the molecule is oriented radially with respect to
the pore axis.

Density profile of nitrogen in cylindrical pores of MCM-41
A.K.Soper and D.T.Bowron

Chem. Phys. Lett. 683 529-535 (2017) UK Research
ience & Technology
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Empirical Potential Structure Refinement
Summary of Current Status
EPSR version 25

Atomic and molecular liquids Yes

Atomic and molecular glasses Yes

Neutron scattering data Refine

X-ray scattering data Refine

Large scale systems 100A (120A at a push)

150000 atoms
50000 molecules

Mesostructured systems Yes
Ordered and partially ordered systems Yes
Bragg scattering modeling Yes

GUI front end
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Empirical Potential Structure Refinement

Download your copy of EPSR from:

https://www.isis.stfc.ac.uk/Pages/Empirical-Potential-Structure-Refinement.aspx

Ui(VBZUSB(r)-i—Uﬁ[;EP(r)

A.K.Soper Chem Phys 202 p.295 (1996)
A.K.Soper Phys Rev B 72 104204 (2005)
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EPSRgui: A more intuitive way to run EPSR

ownload your copy of EPSRqgui from:

https://www.isis.stfc.ac.uk/Pages/Empirical-Potential-Structure-Refinement.aspx
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finit o Sets accumulators to zero, Recalculates .
v B

) Auto Update Save changes Reload.
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The future of EPSR - dissolve

Model Larger
M+ Atoms Lower Q  Structures
. . Led by Code -
Sustainability 5  Modernity. Modularity

120k Atoms

Variance
\ Multiple Box { Branching { (e.g. pore
A size)

Mixed

Phases
Single Box

Use of Task

T DISS[”VE HPC - Farming

. Molecular
Multi-Method Dynamics

“Custom” FF

-

Simplified
Setup /
Input

User
. Accessible

Day 1
GUI

Accessibility

Flexible
Molecules

Standard FF

https://github.com/trisyoungs/dissolve
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Dissolve — current status

Monte Carlo
Molecular dynamics
Full user interface |
Potential refinement
Million atom capable |
— 333,334 SPC/FW water oso0—|
— 15 A cutoff s
~ RDFr,, =107.7A

— 4days/8cores on SCARF  wm| ™

D N N N NN

0.000 —

— MoleculeMC : 2m40s/it |
— Intra MC © 4m30S/it em _f

— Partial g(r) :29m30s/it 200
— Energy : 20s /it “

https://github.com/trisyoungs/dissolve
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