

Structure of glass-forming aluminate liquids under extreme conditions by neutron diffraction with isotope substitution

Acknowledgements

Louis Hennet

Adrian Barnes Simon Kohn Michael Walter

Daniel Neuville

Sandro Jahn

Anita Zeidler Phil Salmon

Henry Fischer Aleksei Bytchkov Gaston Garbarino

Aluminate liquids and glasses

Glass forming liquids

W. H. Zachariasen's rules

[CONTRIBUTION FROM THE RYERSON PHYSICAL LABORATORY, UNIVERSITY OF CHICAGO]

THE ATOMIC ARRANGEMENT IN GLASS

By W. H. ZACHARIASEN

RECEIVED MAY 13, 1932

PUBLISHED OCTOBER 5, 1932

- An oxygen atom linked to no more than two glass-forming atoms
- The coordination number of the glass-forming atoms is small (3 or 4)
- The polyhedra share corners, not edges or faces
- Polyhedra linked in a 3-dimensional network

The case for liquid silica SiO₂

- ✓ An oxygen atom linked to no more than two glass-forming atoms
- ✓ The coordination number of the glassforming atoms is small (3 or 4)
- ✓ The polyhedra share corners, not edges or faces
- ✓ Polyhedra linked in a 3-dimensional network

The case for liquid alumina Al₂O₃

- An oxygen atom linked to no more than two glass-forming atoms
- The coordination number of the glassforming atoms is small (3 or 4)
- The polyhedra share corners, not edges or faces
- Polyhedra linked in a 3-dimensional network

CaO-Al₂O₃ glass forming region

Aerodynamic levitation with laser heating

Liquid CaO-Al₂O₃ fragility

- Glass-forming liquids classified in terms of kinetic fragility
- "Strong" liquids exhibit approximately Arrhenius viscosity temperature dependence
- "Fragile" liquids exhibit non-Arrhenius behaviour characterised by a drastic dynamic slow-down on approach to $T_{\rm q}$
- Vogel-Tammann-Fulcher fit to $CaAl_2O_4$ viscosity give fragility index (gradient at T_g) m = 116 characteristic of a fragile liquid (cf. m = 20 for SiO_2)

Liquid CaO-Al₂O₃ fragility

Debenetti & Stillinger 2001 Nature 410 259

- Strong liquids (e.g. SiO₂) have deep broad minima in the potential energy landscape due to stable local coordinations and self-reinforcing 3-D networks that restrict the number of available configurations.
- Fragile liquids larger range of potential energy minima in configurational space due to higher degree of short- and intermediate-range disorder
- On supercooling high energy barriers cf. thermal energies are encountered: increasingly unable to explore the full-range of configurational states.
- The system becomes trapped in a deep local energy minimum.

Liquid and Glass Diffraction

Aspherical Ion Model (AIM)

Snapshot of Liquid CaAl₂O₄ at 2500 K

- AIM ionic interaction potentials derived for the Ca-Mg-Al-Si-O system (Jahn & Madden 2007)
- Account for dipole polarisation and shape deformation

$$V = V^{qq} + V^{\text{disp}} + V^{\text{rep}} + V^{\text{pol}}$$

 V^{qq}

: pair wise additive Coulomb and

 V^{disp}

dispersion interactions

7/rep

: short-range repulsion term

 V^{pol}

: dipolar and quadrupolar

polarization terms

Synchrotron x-ray diffraction with aerodynamic levitation

(a) + (b) : CO₂ lasers (c) levitation chamber

- (d) levitation nozzle
- (e) Frelon CCD detector
- (f) pyrometer

Drewitt et al. 2011 J. Phys. Condens. 23 155101

Static and time-resolved synchrotron x-ray diffraction

ESRF frelon camera: Fast Readout LOw Noise

Full Frame Transfer mode

- Active image zone: 2048 X 2048 14 μm² pixels
- Static XRD 60 s acquisitions
- Beam centre at corner for large Q-range

Frame Transfer mode

- Active image zone: 2048 X 512 pixels
- Remainder of chip memory buffer
- Time-resolved XRD with 30 ms acquisitions

Drewitt et al. 2011 J. Phys. Condens. 23 155101

In situ vitrification of liquid CaAl₂O₄ and Ca₃Al₂O₆

In situ vitrification of liquid CaO-Al₂O₃

In situ vitrification of liquid CaAl₂O₄

- Cooling from $T_{\rm m}$ to $T_{\rm q}$ in 3.2 s
- 96 X 30 ms acquisitions in supercooled region during glass formation
- Two distinct cooling regimes marked inflection in vicinity of dynamical cross-over temperature at \sim 1.25 $T_{\rm q}$
- Progressive increase in height and reduction in FWHM of first peak in S(Q) accompanied by shift in peak position (-ve for CA, +ve for C3A)
- Indicative of progressive ordering of cationcentred polyhedra
- No further structural organisation beyond $T_{
 m g}$

D4c Neutron Diffractometer, Institut Laue-Langevin

Neutron diffraction of levitated liquid CaAl₂O₄

Drewitt *et al.* 2012 *Phys. Rev. Lett.* **109** 235501

Neutron diffraction with 44Ca isotope substitution

Three samples of identical composition varying only in Ca isotopic enrichment

- $b(^{44}Ca) = 1.42(6) \text{ fm}$
- $b(^{nat}Ca) = 4.70(2) \text{ fm}$
- $b(^{mix}Ca) = 3.06(3) \text{ fm}$
- Long counting times!

Neutron diffraction with 44Ca isotope substitution

$$F(Q) = \sum_{\alpha} \sum_{\beta} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} [S_{\alpha\beta}(Q) - 1]$$

Full partial structure factor analysis using NDIS most feasible for binary systems as N(N+1)/2 isotopically substituted samples are required.

Pseudo-binary representation Ca and μ (Al,O)

$$F(Q) = c_{Ca}^2 b_{Ca}^2 [S_{\text{CaCa}}(Q) - 1] + 2c_{Ca} b_{Ca} S_{\text{Ca}\mu}(Q) + S_{\mu\mu}(Q),$$

$$S_{\text{Ca}\mu}(Q) = c_{\text{Al}}b_{\text{Al}}[S_{\text{CaAl}}(Q) - 1] + c_{\text{O}}b_{\text{O}}[S_{\text{CaO}}(Q) - 1]$$

$$S_{\mu\mu}(Q) = c_{\rm Al}^2 b_{\rm Al}^2 [S_{\rm AlAl}(Q) - 1] + c_{\rm O}^2 b_{\rm O}^2 [S_{\rm OO}(Q) - 1] + 2c_{\rm Al} c_{\rm O} b_{\rm Al} b_{\rm O} [S_{\rm AlO}(Q) - 1]$$

Drewitt *et al.* 2012 *Phys. Rev. Lett.* **109** 235501

Neutron diffraction with 44Ca isotope substitution

Pseudobinary partial structure factors isolated using the scattering matrix

$$\begin{bmatrix} S_{\text{CaCa}}(Q) - 1 \\ S_{\text{Ca}\mu}(Q) \\ S_{\mu\mu}(Q) \end{bmatrix} = \begin{bmatrix} c_{\text{Ca}}^{2}b_{44}^{2} & 2c_{\text{Ca}}b_{44} & 1 \\ c_{\text{Ca}}^{2}b_{\text{mix}}^{2} & 2c_{\text{Ca}}b_{\text{mix}} & 1 \\ c_{\text{Ca}}^{2}b_{\text{nat}}^{2} & 2c_{\text{Ca}}b_{\text{nat}} & 1 \end{bmatrix}^{-1} \times \begin{bmatrix} \frac{44}{F(Q)} \\ \frac{\text{mix}}{F(Q)} \\ \frac{\text{nat}}{F(Q)} \end{bmatrix}$$

Real-space difference functions

Eliminate correlations involving Ca

$$g_{\mu\mu}(r) = c_{\rm Al}^2 b_{\rm Al}^2 [g_{\rm AlAl}(r) - 1] + c_{\rm O}^2 b_{\rm O}^2 [S_{\rm OO}(Q) - 1] + 2c_{\rm Al} c_{\rm O} b_{\rm Al} b_{\rm O} [S_{\rm AlO}(Q) - 1]$$

Eliminate correlations not involving Ca

$$g_{\text{Ca}\mu}(r) = c_{\text{Al}}b_{\text{Al}}[g_{\text{CaAl}}(r) - 1] + c_{\text{O}}b_{\text{O}}[g_{\text{CaO}}(r) - 1]$$

Direct extraction of the Ca-Ca correlations

- $S_{CaCa}(Q)$ and $g_{CaCa}(r)$ isolated for equimolar CA glass and C₃A liquid
- Very small samples (~ 3 mm): first double difference function for oxide liquid

Structural reorganization on multiple length scales

- AlO₅ and oxygen triclusters present in the liquid
- On glass formation, these breakdown to form almost entirely corner shared tetrahedral glass network
- Accompanied by an increase in medium range order, associated with development of chains of edge and face shared Ca-centered polyhedra in glass
- Although CaAl₂O₄ liquid breaks Zachariasen's rules, on vitrification it forms a tetrahedral corner shared network

AlO₄ liquid network structure

- Although depolymerised composition, liquid Ca₃Al₂O₆ largely composed of AlO₄ tetrahedra forming infinite network
- Around 10 % unconnected AlO₄ monomers and Al_2O_7 dimers
- With increasing CaO concentration, number of isolated units increases, thus C₃A composition represents a threshold beyond which glass can no longer support infinitely connected network

Aluminate liquids and glasses at high-pressure

Diamond Anvil Cell (DAC)

Laser heating

Beamline ID27 - ESRF

High pressure x-ray structure factors

Drewitt et al. 2015 J. Phys. Condens. Matter 27 105103

High pressure pair distribution functions

Drewitt et al. 2015 J. Phys. Condens. Matter 27 105103

Al-O coordination and clustering with pressure

- Ambient pressure: structure is strongly determined by chemical ordering arising from network forming Al-O / Si-O tetrahedra (yellow).
- Elevated pressure: relatively open network structure is compressed and the Al and Si coordination increases. AlO₆ units (**blue**) become increasingly dominant above 15 GPa.
- Development of topological ordering: more closely packed structure, increase in O-O coordination number consistent with closely packed hard spheres.

Drewitt et al. 2015 J. Phys. Condens. Matter 27 105103

Contrast in neutron scattering lengths

- $b(^{73}\text{Ge}) = 5.02(4) \text{ fm}$
- $b(^{\text{nat}}\text{Ge}) = 8.185(20) \text{ fm}$
- $b(7^{\circ}Ge) = 10.0(1) \text{ fm}$

- Rigorous constraint for MD models
- DIPole-Polarisable Ion Model (DIPPIM) only model in quantitative agreement with experiment

- Results consistent with operation of two densification mechanisms:
- (1) Collapse of open network structure of corner-linked tetrahedra at low P – evidenced by reduction and shift in first sharp diffraction peak
- (2) > 5 GPa, transformation of tetrahedra to higher coordinations

5-fold polyhedra play an essential role in *P*-driven transformations

Summary I: NDIS on small levitated liquid calcium aluminates

Equimolar CaAl₂O₄

- Liquid breaks Zachariasen's rules
- Undergoes structural reorganisation on quenching: Breakdown of AlO₅ oxygen triclusters to form corner-shared tetrahedral AlO₄ network structure
- Accompanied by changes in medium range order via formation of edge- and face-shared chains of Ca-centred polyhedra.

Glass forming end member Ca₃Al₂O₆

- liquid consists mostly of tetrahedral AlO₄ network
- Represents a threshold, above which isolated AlO₄ monomers or Al₂O₇ dimers prevents formation of infinitely connected network.

Summary II: Al coordination change at high pressure

Al coordination change at high pressure

- Strong chemical ordering at ambient P: AlO₄ + SiO₄
- AlO₅ dominant at ~10 GPa followed by AlO₆ by 30 GPa
- At 30 GPa, Ca+Al ions form large clusters of edge- or face-sharing polyhedra
- O-O coordination from 9 to 11 at 10 GPa: consistent with random close packing of hard spheres
- Pressures within accessibility region for Paris-Edinburgh press: neutron diffraction with isotope substitution...

