RMCProfile: Local structure of crystalline to amorphous materials

Matt Tucker & Helen Playford (ORNL, USA & ISIS, UK)

The local view

Conventional view

Local vs Average

HIGH FLUX ISOTOPE SPALLATION NEUTRON

SOURCE

OAK RIDGE

National Laboratory REACTOR

Total scattering

Total scattering

Pair distribution function

Rosalind Franklin and Total Scattering

National Laboratory | REACTOR

SOURCE

Big box vs small box models

PDFgui (r-space Reitveld)

SOURCE

Big box models

PDFgui (r-space Reitveld)

SPALLATION NEUTRON

SOURCE

Disordered materials

Simple crystals

Disordered crystals

Amorphisation Amorphous

RMCProfile

SPALLATION NEUTRON SOURCE

The RMC Method

Reverse Monte Carlo Simulation: a new technique for the determination of disordered structures

McGreevy R L and Pusztai L, Molecular Simulation 1 (1988) 359

We have developed a new technique, based on the standard Monte Carlo simulation method with Markov chain sampling, where a set of three dimensional particle configurations are generated that are consistent with the experimentally measured structure factor, A(Q), and radial distribution function, g(r), of a liquid or other disordered system. Consistency is determined by a standard χ^2 test using the experimental errors. No input potential is required. We present initial results for liquid argon. Since the technique can work directly from the structure factor it promises to be extremely powerful for modelling the structures of glasses or amorphous materials. It also has many other advantages in multicomponent systems and as a tool for experimental data analysis.

Key words: Monte Carlo, structure factor, radial distribution function, liquid, glass.

PACS numbers: 02.50, 61.25, 61.40.

SPALLATION NEUTRON SOURCE

The Reverse Monte Carlo algorithm

Generate initial configuration

Move a randomly selected atom a random distance

Compute new experimental functions and compare with data

 \hookrightarrow

Only reject change if comparison is worse and with some probability

RMC in action: C60

SOURCE

RMC in action: C60

Cliffe M J *et al, PRL* **104** (2010) 1255013

RMC in action

RMCA

National Laboratory HIGH FLUX

HIGH FLUX ISOTOPE

SPALLATION NEUTRON

SOURCE

RMCProfile: Fits

Big box models

Playford, H.Y.; Hannon, A. C.; Barney, E. R.; Walton, R. I. Chem. Eur. J. 2013, 19, 2803

Playford, H.Y.; Hannon, A. C.; Tucker, M. G., Dawson, D. M.; Ashbrook, S. E.; Kastiban, R. J.; Sloan, J.; Walton, R. I. J. Phys. Chem. C 2014, 118, 16188

Average structure of γ -Ga₂O₃

- Potential photocatalyst and catalyst support
- Poorly understood
- Cubic spinel-type structure
- Rietveld refinement reveals four partially occupied Ga sites
- Nanocrystalline

Small box modelling of y-Ga₂O₃ (PDFgui)

- Small-box modelling of the PDF
- Medium-to-high *r* agrees well with average crystal structure
- Large discrepancies in local structure
- Improved fit when lower symmetry model is used, but it is a purely local effect

Big box modelling of γ-Ga₂O₃ (RMCProfile)

Random starting model: Ga-Ga < 1Å

Big box modelling of γ-Ga₂O₃ (RMCProfile)

Big box modelling of γ-Ga₂O₃ (RMCProfile)

Green = octahedral Ga Blue = tetrahedral Ga

Big box modelling of γ-Ga₂O₃ (RMCProfile)

Random starting model:

Ga-Ga < 1Å

Big box modelling of γ-Ga₂O₃ (RMCProfile)

RMC refinement using 6x6x6 supercell

- vastly improved fit to local structure
- maintains correct average

Collapsed RMC box

Unit cell

Big box modelling of γ-Ga₂O₃ (RMCProfile)

RMC provides bond length and angle distributions:

 the O_h sites are highly distorted

Big box modelling of γ-Ga₂O₃ (RMCProfile)

Weighted Ga-O partials

RMC provides bond length and angle distributions:

- the O_h sites are highly distorted
- the crystal structure defines two very different T_d sites
- but locally these sites are very similar

Non-spinel T_d site

Big box modelling of γ-Ga₂O₃ (RMCProfile)

Weighted Ga-O partials

RMC provides bond length and angle distributions:

- the O_h sites are highly distorted
- the crystal structure defines two very different T_d sites
- but locally these sites are very similar
- these distributions are the sum of 200 refined "boxes of atoms"

Non-spinel T_d site

Science & Technology Facilities Council

Spinel T_d site

The data clearly show the octahedra are distorted, but what do they actually look like?

- multiple RMC runs provide ensemble of >700,000 polyhedra to analyse!
- 50% all 6 bonds shorter than the mean bond length
- 40% [3+3] type

Thermodynamically stable β -Ga₂O₃ has [3+3] type...

```
Locally, cubic \gamma-Ga<sub>2</sub>O<sub>3</sub> = monoclinic \beta-Ga<sub>2</sub>O<sub>3</sub>
```


Crystallography

- average structure (symmetry, lattice parameter)
- instrument resolution

Full structural description

Crystallography

- average structure (symmetry, lattice parameter)
- instrument resolution

Full structural description

Small-box modelling

- confirmation of midrange structure
- discrepancies in local structure

RMCProfile Review

New Insights into Complex Materials Using Reverse Monte Carlo Modeling

Helen Y. Playford,¹ Lewis R. Owen,² Igor Levin,³ and Matt G. Tucker^{1,4}

¹ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, United Kingdom; email: matt.tucker@stfc.ac.uk

²Department of Materials Science & Metallurgy, University of Cambridge, Cambridge, CB3 0FS, United Kingdom

³Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

⁴Diamond Light Source, Harwell Oxford, Didcot, Oxfordshire, OX11 0DE, United Kingdom

Annual Review Material Research, 2014, 44:429–49

Big box a Cat's view

Acknowledgements

Martin Dove (QMUL)	Dave Keen (ISIS)	Andrew Goodwin (Oxford)
Stefan Norberg (Chalmers)	Igor Levin (NIST)	Victor Krayzman (NIST)
Helen Playford (ISIS)	Wotjek Slawinski (ISIS)	Marshall McDonnell (ORNL)
Yuanpeng Zhang (ORNL/NIST)		
www.rmcprofile.org		
tuckermg@ornl.gov helen.		layford@stfc.ac.uk

CAK RIDGE National Laboratory