

The interpretation of broad diffuse maxima using superspace crystallography

Introducing disorder in superspace

<u>Ella M. Schmidt</u> and Reinhard B. Neder Institute for Crystallography and Structural Physics, FAU Erlangen-Nürnberg March 20, 2019

Diffraction pattern of a modulated structure

- Describe long-range ordered, modulated structure with few parameters
- Modulation wave vector $\mathbf{q} = (\alpha, \beta, \gamma)$

1-dimensional piano structure in two-dimensional superspace:

2

March 20, 2019

Changing $\alpha \quad \leftrightarrow \quad$ Changing real space periodicity

Paul B. Klar FZU Prague

Modulation function: $u_+(a) = A\cos(2\pi qa)$

- *q* determines periodicity of modulation function
- A determines the amplitude of the modulation function
- Modulation functions for occupancy and/or displacement
- Real space ≡ cut through direct superspace
- Reciprocal space ≡ projection of reciprocal superspace

[1] Van Smaalen, Sander. Incommensurate crystallography. Vol. 21. Oxford University Press, 2007.

[2] Janssen, Ted, Gervais Chapuis, and Marc De Boissieu. Aperiodic Crystals: From Modulated Phases to Quasicrystals: Structure and Properties. Oxford University Press, 2018.

[1] Van Smaalen, Sander. Incommensurate crystallography. Vol. 21. Oxford University Press, 2007.

[2] Janssen, Ted, Gervais Chapuis, and Marc De Boissieu. Aperiodic Crystals: From Modulated Phases to Quasicrystals: Structure and Properties. Oxford University Press, 2018.

(1+1)D ordered superspace

Modulation function: $u_{-}(a) = -A\cos(2\pi qa)$

- \rightarrow Sharp satellite reflections at $h \pm q$.
- $\rightarrow u_{+}(a)$ and $u_{-}(a)$ cannot be distinguished experimentally.

(1+1)D disordered superspace

- Phase domains in superspace
- Positive correlation along *a*_{s1}
- Warren-Cowley short range order parameter α^s₁ > 0

(1+1)D disordered superspace

- Phase domains in superspace
- Positive correlation along *a*_{s1}
- Warren-Cowley short range order parameter α^s₁ > 0
- What happens to the sharp satellite reflections?

- Au/Ag 1:1 crystal
- $q = \frac{\sqrt{7}}{7} \approx 0.378$
- Modulation functions:
 - $p_+(a) = 0.5 + 0.5\cos(2\pi qa)$ $p_-(a) = 0.5 - 0.5\cos(2\pi qa)$

- Create disordered super space structure with
 - positive correlation $(\alpha_1^s = 0.85)$

•
$$m_{p_+} = m_{p_-} = 0.5$$

 $q = \frac{\sqrt{7}}{7}$

- Au/Ag 1:1 crystal
- $q = \frac{\sqrt{7}}{7} \approx 0.378$
- Modulation functions:

 $p_+(a) = 0.5 + 0.5\cos(2\pi qa)$ $p_-(a) = 0.5 - 0.5\cos(2\pi qa)$

- Create disordered super space structure with
 - positive correlation $(\alpha_1^s = 0.85)$

•
$$m_{p_+} = m_{p_-} = 0.5$$

 $\alpha_1^s = 0.85$

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

(1+1)D disordered superspace - Peak position tuning

1D occupational disorder

- $p_+(a) = 0.5 + 0.5 \cos(2\pi qa)$
- $p_{-}(a) = 0.5 0.5 \cos(2\pi qa)$

(1+1)D disordered superspace - Peak width tuning

1D occupational disorder

- $p_+(a) = 0.5 + 0.5 \cos(2\pi qa)$
- $p_{-}(a) = 0.5 0.5 \cos(2\pi qa)$

 a_{s2}

 \boldsymbol{a}_1

- 2D basic structure
- $\boldsymbol{q} = (\sigma_1, \sigma_2)$
- Modulation functions:

 $p_+(a) = 0.5 + 0.5 \cos(2\pi qa)$ $p_-(a) = 0.5 - 0.5 \cos(2\pi qa)$

- Au/Ag 1:1 crystal
- Plane space group p1
- One atom per unit-cell at (0,0)

- Au/Ag 1:1 crystal
- Plane space group p1
- One atom per unit-cell at (0,0)
- $\boldsymbol{q} = \left(\frac{1}{2}, \frac{\sqrt{7}}{7}\right)$
- Modulation functions:

 $p_+(a) = 0.5 + 0.5 \cos(2\pi qa)$ $p_-(a) = 0.5 - 0.5 \cos(2\pi qa)$

- Au/Ag 1:1 crystal
- Plane space group p1
- One atom per unit-cell at (0,0)
- $\boldsymbol{q} = \left(\frac{1}{2}, \frac{\sqrt{7}}{7}\right)$
 - Modulation functions: $p_{+}(a) = 0.5 + 0.5 \cos(2\pi qa)$ $p_{-}(a) = 0.5 - 0.5 \cos(2\pi qa)$
- Create disordered super space structure with
 - positive correlations along *a*_{s1} and *a*_{s2}:

$$lpha_{(1,0)}^s=0.7$$

 $lpha_{(0,1)}^s=0.5$

•
$$m_{p_+} = m_{p_-} = 0.5$$

max

(2+1)D disordered superspace - Occupational disorder

- Au/Ag 1:1 crystal
- Plane space group p1
- One atom per unit-cell at (0,0)
- $\boldsymbol{q} = \left(\frac{1}{2}, \frac{\sqrt{7}}{7}\right)$
 - Modulation functions: $p_+(\mathbf{a}) = 0.5 + 0.5 \cos(2\pi q\mathbf{a})$ $p_-(\mathbf{a}) = 0.5 - 0.5 \cos(2\pi q\mathbf{a})$
- Create disordered super space structure with
 - positive correlations along *a*_{s1}
 and *a*_{s2}:

$$lpha_{(1,0)}^s = 0.7$$

 $lpha_{(0,1)}^s = 0.5$
• $m_{p_+} = m_{p_-} = 0.5$

(2+1)D disordered superspace - Diffuse rods

- Au/Ag 1:1 crystal
- Plane space group p1
- One atom per unit-cell at (0,0)
- $\boldsymbol{q} = \left(\frac{1}{2}, \frac{\sqrt{7}}{7}\right)$
- Modulation functions:

 $p_+(a) = 0.5 + 0.5 \cos(2\pi qa)$ $p_-(a) = 0.5 - 0.5 \cos(2\pi qa)$

(2+1)D disordered superspace - Diffuse rods

- Au/Ag 1:1 crystal
- Plane space group p1
- One atom per unit-cell at (0,0)
- $\boldsymbol{q} = \left(\frac{1}{2}, \frac{\sqrt{7}}{7}\right)$
 - Modulation functions: $p_{+}(a) = 0.5 + 0.5 \cos(2\pi qa)$ $p_{-}(a) = 0.5 - 0.5 \cos(2\pi qa)$
- Create disordered super space structure with
 - positive correlation along *a*_{s2}:

$$lpha_{(1,0)}^s=0.0 \ lpha_{(0,1)}^s=0.95$$

•
$$m_{p_+} = m_{p_-} = 0.5$$

(2+1)D disordered superspace - Diffuse rods

- Au/Ag 1:1 crystal
- Plane space group p1
- One atom per unit-cell at (0,0)
- $\boldsymbol{q} = \left(\frac{1}{2}, \frac{\sqrt{7}}{7}\right)$
 - Modulation functions: $p_+(\mathbf{a}) = 0.5 + 0.5 \cos(2\pi q\mathbf{a})$ $p_-(\mathbf{a}) = 0.5 - 0.5 \cos(2\pi q\mathbf{a})$
- Create disordered super space structure with
 - positive correlation along *a*_{s2}:

$$lpha_{(1,0)}^s=$$
 0.0 $lpha_{(0,1)}^s=$ 0.95

•
$$m_{p_+} = m_{p_-} = 0.5$$

- Basic structure shows symmetry
- Superspace group $pg1(\frac{1}{2},\beta)$ Site A: (+0.1,0.0) Site B: (-0.1,0.5)

- Basic structure shows symmetry
- Superspace group pg1(¹/₂, β) Site A: (+0.1, 0.0) Site B: (-0.1, 0.5)
- Bragg-reflection condition:

$$0k: \quad k=2r$$

- $\boldsymbol{q} = \left(\frac{1}{2}, \frac{\sqrt{7}}{7}\right)$
- $\alpha_{(1,0)}^s = \alpha_{(0,1)}^s = 0.7$
- Modulation functions:

Site A:
$$p_A(\mathbf{a}_A) = 0.5 \pm 0.5 \cos(2\pi(+\sigma_1 a_{1A} + \sigma_2 a_{2A}))$$

Site B: $p_B(\mathbf{a}_B) = 0.5 \pm 0.5 \cos(2\pi(-\sigma_1 a_{1B} + \sigma_2 a_{2B} + a_{2B}))$

- Basic structure shows symmetry
- Superspace group pg1(¹/₂, β) Site A: (+0.1,0.0) Site B: (-0.1,0.5)
- Bragg-reflection condition: 0k: k = 2n
- $\boldsymbol{q} = \left(\frac{1}{2}, \frac{\sqrt{7}}{7}\right)$
- $\alpha_{(1,0)}^s = \alpha_{(0,1)}^s = 0.7$

Modulation functions:

Site A:
$$p_A(\mathbf{a}_A) = 0.5 \pm 0.5 \cos(2\pi(+\sigma_1 a_{1A} + \sigma_2 a_{2A}))$$

Site B: $p_B(\mathbf{a}_B) = 0.5 \pm 0.5 \cos(2\pi(-\sigma_1 a_{1B} + \sigma_2 a_{2B} + a_{2B}))$

- Basic structure shows symmetry
- Superspace group pg1(¹/₂, β) Site A: (+0.1,0.0) Site B: (-0.1,0.5)
- Bragg-reflection condition: 0k: k = 2n
- $\boldsymbol{q} = \left(\frac{1}{2}, \frac{\sqrt{7}}{7}\right)$
- $\alpha_{(1,0)}^s = \alpha_{(0,1)}^s = 0.7$

Modulation functions:

Site A:
$$p_A(\mathbf{a}_A) = 0.5 \pm 0.5 \cos(2\pi(+\sigma_1 a_{1A} + \sigma_2 a_{2A}))$$

Site B: $p_B(\mathbf{a}_B) = 0.5 \pm 0.5 \cos(2\pi(-\sigma_1 a_{1B} + \sigma_2 a_{2B} + a_{2B}))$

 \rightarrow Diffuse satellites obey reflection condition as well

 $0.1 \cdot \max$

Intensity

0

(2+1)D disordered superspace - Reflection condition

- Basic structure shows symmetry
- Superspace group pg1(¹/₂, β) Site A: (+0.1,0.0) Site B: (-0.1,0.5)
- Bragg-reflection condition:
 0k: k = 2n
- $\boldsymbol{q} = \left(\frac{1}{2}, 1 + \frac{\sqrt{7}}{7}\right)$
- $\alpha_{(1,0)}^s = \alpha_{(0,1)}^s = 0.7$

Modulation functions:

Site A: $p_A(\mathbf{a}_A) = 0.5 \pm 0.5 \cos(2\pi(+\sigma_1 a_{1A} + \sigma_2 a_{2A}))$ Site B: $p_B(\mathbf{a}_B) = 0.5 \pm 0.5 \cos(2\pi(-\sigma_1 a_{1B} + \sigma_2 a_{2B} + a_{2B}))$

3

- Basic structure shows symmetry
- Superspace group pg1(¹/₂, β) Site A: (+0.1,0.0) Site B: (-0.1,0.5)
- Bragg-reflection condition:
 0k: k = 2n
- $\boldsymbol{q} = \left(\frac{1}{2}, 1 + \frac{\sqrt{7}}{7}\right)$
- $\alpha_{(1,0)}^s = \alpha_{(0,1)}^s = 0.7$

Modulation functions:

Site A:
$$p_A(\mathbf{a}_A) = 0.5 \pm 0.5 \cos(2\pi(+\sigma_1 a_{1A} + \sigma_2 a_{2A}))$$

Site B: $p_B(\mathbf{a}_B) = 0.5 \pm 0.5 \cos(2\pi(-\sigma_1 a_{1B} + \sigma_2 a_{2B} + a_{2B}))$

$$ightarrow$$
 Diffuse satellites obey reflection condition as well

 \rightarrow "Virtual" satellite reflection condition 0k : k = 2n + 1

- Basic structure shows symmetry
- Superspace group $pm1(0,\beta)s0$ with internal translation Site A: (+0.1,0.0) Site B: (-0.1,0.0)
- Satellite-reflection condition^{*a*}: *hk* : $h \neq 0$
- $\boldsymbol{q} = \left(0, \frac{\sqrt{7}}{7}\right)$
- $\alpha_{(1,0)} = \alpha_{(0,1)} = 0.7$
- Modulation functions:

Site A:
$$p_A(\mathbf{a}_A) = 0.5 \pm 0.5 \cos(2\pi(\sigma_2 a_{2A}))$$

Site B: $p_B(\mathbf{a}_B) = 0.5 \pm 0.5 \cos(2\pi(\sigma_2 a_{2B} + \frac{1}{2}))$

^a For occupational modulation functions with only one cosine-term.

- · Basic structure shows symmetry
- Superspace group $pm1(0,\beta)s0$ with internal translation Site A: (+0.1,0.0) Site B: (-0.1,0.0)
- Satellite-reflection condition^{*a*}: hk: $h \neq 0$
- $\boldsymbol{q} = \left(0, \frac{\sqrt{7}}{7}\right)$
- $\alpha_{(1,0)} = \alpha_{(0,1)} = 0.7$
- Modulation functions:

Site A:
$$p_A(\mathbf{a}_A) = 0.5 \pm 0.5 \cos(2\pi(\sigma_2 a_{2A}))$$

Site B: $p_B(\mathbf{a}_B) = 0.5 \pm 0.5 \cos(2\pi(\sigma_2 a_{2B} + \frac{1}{2}))$

- Basic structure shows symmetry
- Superspace group $pm1(0,\beta)s0$ with internal translation Site A: (+0.1,0.0) Site B: (-0.1,0.0)
- Satellite-reflection condition^{*a*}: $hk: h \neq 0$
- $\boldsymbol{q} = \left(0, \frac{\sqrt{7}}{7}\right)$

Ella Schmidt

- $\alpha_{(1,0)} = \alpha_{(0,1)} = 0.7$
- Modulation functions:
 - Site A: $p_A(\mathbf{a}_A) = 0.5 \pm 0.5 \cos(2\pi(\sigma_2 a_{2A}))$ Site B: $p_B(\mathbf{a}_B) = 0.5 \pm 0.5 \cos(2\pi(\sigma_2 a_{2B} + \frac{1}{2}))$

 \rightarrow Diffuse satellites obey superspace reflection condition as well

^{*a*} For occupational modulation functions with only one cosine-term.

Possible applications

Diffuse rods showing 'extinction conditions'

	re	search papers
Acta Crystallographica Soction B Structural Science	Symmetry analysis of extinction rules in diffuse- scattering experiments	
ISSN 0308-7601		
R. L. Withers, ^a M. I. Aroyo, ^{be} I. M. Perez-Mato ^b and D.	Structured diffuse-scattering intensities, whether of composi- tional or of sure displacive origin, static or dynamic, partain	Received 14 January 2010 Accepted 9 March 2030

Orobenzoa^b

important information about the symmetry of the individual compositional and/or displacive modes responsible for the observed intensities. However the intermretation of the

Possible applications

Diffuse rods showing 'extinction conditions'

0	research papers	
Acta Crystallographica Soction II Structural Science	Symmetry analysis of extinction rules in diffuse- scattering experiments	
ESN 0108-7601		
R. L. Withers," M. I. Aroyo, ^{be}	Structured diffuse-scattering intensities, whether of composi-	Received 14 January 2010

R. L. Withers," M. I. Aroyo,⁵⁴ J. M. Perez-Mato^b and D. Orobengoa^b Structured diffuse-scattering intensities, whether of compositional or of pure displacive origin, static or dynamic, contain Acimportant information about the symmetry of the individual compositional and/or displacive modes responsible for the observed insensities. However, the intermentation of the

composicontain Accepted 9 March 2010 dividual Sharp satellites on top of diffuse scattering

IUCrJ

PHYSICS FELS

research papers

Exploiting superspace to clarify vacancy and Al/Si ordering in mullite

Paul Benjamin Klar,"* Iñigo Etxebarria^b and Gotzon Madariaga"

Received 2 March 20 Accepted 17 May 20 "Departamento de Trisca de la Materia Constensala, Facultad de Clencia y Tecnología, Universidad de Tatis Vasco UPW 1947, Apartido 644, Bibbo 68800, Spain, and "Departamento de Trisca Aplicada II, Facultad de Clencia y Tecnología, Universidad del Tatis Vasco UPV/DIU, Apartado 644, Bibbo 48000, Spain. "Conceptordence e mait posterioriani Alendeixa na.

Possible applications

Diffuse rods showing 'extinction conditions'

	re	search papers	
Acta Crystallographica Section B Structural Science	Symmetry analysis of extinction rules in diffuse- scattering experiments		
ISSN 0108-7601			
R. L. Withers," M. I. Aroyo, ^{be}	Structured diffuse-scattering intensities, whether of composi-	Received 14 January 2010 Accepted 9 March 2010	
J. M. Perez-Mato and D. Orobennoa ^b	important information about the symmetry of the individual		

compositional and/or displacive modes responsible for the observed intensities. However, the intermetation of the

Sharp satellites on top of diffuse scattering

٢	research papers
IUCrJ PHYSICS FELS	Exploiting superspace to clarify vacancy and Al/Si ordering in mullite
	Paul Benjamin Klar,** Itigo Etxebarria* and Gotzon Madariaga*
	"Departamento de Thista de la Materia Condensala, Feculará de Cárecia y Tecnología, Universidad del Patri Vacos UPW 1992, Apartedo 644, Biber #0000, Spain, and "Departamento de Thista Aplicada II, Facultat de Cencia y Tecnología

Phase transitions: Diffuse scattering turns into sharp satellite reflections

Summary

- Disordered superspace models allow to characterize width and position of diffuse maxima independently
- Unified model for diffuse maxima at different positions in reciprocal space
- Superspace symmetry allows direct access to extinction rules

Summary

- Disordered superspace models allow to characterize width and position of diffuse maxima independently
- Unified model for diffuse maxima at different positions in reciprocal space
- · Superspace symmetry allows direct access to extinction rules

Outlook

- Application to different disordered systems
- Expansion to (3+d)D

Summary

- Disordered superspace models allow to characterize width and position of diffuse maxima independently
- Unified model for diffuse maxima at different positions in reciprocal space
- · Superspace symmetry allows direct access to extinction rules

Outlook

- Application to different disordered systems
- Expansion to (3+d)D
- Possible peak shape tuning by introducing size-effect like relaxations?
- Possibility of curved diffuse features?

Acknowledgments

FAU Erlangen

Reinhard Neder Marvin Berlinghof Johannes Dallmann Stefan Diez Matthias Weißer

FZU Prague/EHU Bilbao

Paul B. Klar

Funding

FAU Office for Gender and Diversity Bavarian Equal Opportunities Sponsorship