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DIFFRACTION 
 

• Fraunhoffer diffraction: (i) point-like single particle and 
(ii) assembly of point-like scattering centres (weak 
scattering limit) 
 

• Density functions and Fourier transforms 
 

• Diffraction from an assembly of finite-sized scattering 
centres 

 

• Differential scattering cross-section: The static 
approximation 

 

• Real-space structure 
 

• Multicomponent systems 
 

• Neutron diffraction with isotope substitution (NDIS) 
 

• Anomalous X-ray scattering (AXS) 
 

 

 
 

The Institut Laue-Langevin (ILL) 
(www.ill.fr) and the  

European Synchrotron Radiation 
Facility (ESRF) (www.esrf.fr)  

in Grenoble 

http://www.ill.fr/
http://www.esrf.fr/
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SCATTERING BY A SINGLE PARTICLE 
 

Consider a single point-like particle at the origin and 
an incident plane wave 

 

 
 

Incident plane wave: 
 

( )trki 000inc exp ωφ −•=Φ   
 

Scattered spherical wave ( λ >> particle diameter) 
 

( ) tiRik
sc ee

R
atRki

R
A 010

01
0 exp ωφαωφ −≡+−=Φ  

 
where a = Aeiα depends on the nature of the 

interaction between the incident wave and the 
scattering centre 

(α determines the phase of the scattered wave 
relative to that incident) 

k0 

k1 

r 

To some distant 
point at R 

To some 
arbitrary point 
from origin 

λ 
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Note: For Schrödinger waves Φinc and Φsc are 
complex.  For other waves only the real parts have 

physical significance. 
 

Scattering triangle 
 

 

2θ = scattering angle 
 

0k = incident momm 
1k = scattered momm 

 
 

Change in particle’s momm ( ) Qkk  =− 10  
 

Q is called the scattering vector 
 

By the cosine rule θ2cos2 10
2
1

2
0

2 kkkkQ −+=  
 

For elastic scattering |k0| = |k1| = 2π/λ.  So 
 

θ

θ
22

0

2
0

2

sin4
)2cos1(2

k
kQ

=

−=
 

 

or      θ
λ
π sin4

=Q  

 
 

 
 
 
 

Q = k0 – k1 k1 

k0 
2θ 
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If a second particle is at some position r : - 
 

 
__________________________________________________________________ 

 

AB = r cosα = 0k̂r •      
0

0
0ˆ

k
kk =  

OC = r cosβ = 1k̂r •      
1

1
1ˆ

k
kk =  

 

∴ path difference AB – OC = 
1

1

0

0

k
kr

k
kr •

−
•  

 

  = Qr •
π
λ

2
    for elastic scattering 

 
(phase difference) = (path difference) x 2π/λ = r • Q = Q • r 

 

∴ tirQRki
sc ee

R
a 01 )(0 ωφ −•+=Φ  

i.e. second particle gives an additional phase 
shift of Q • r 

k1 
O 

k0 

C 

A B 

   r 

∠ BOC = β 

∠ ABO = α 

To distant 
point at R 
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DIFFRACTION FROM AN ASSEMBLY OF 
PARTICLES 

 
For an assembly of point-like scattering centres at 

positions ri (i = 1, 2, …., N) 
 

i
N

iQ ri tik R
sc

i

a e e e
R

ωφ •−

=

Φ = ∑010

1
 

 

 

Hence intensity of 
scattered radiation in 

detector of area dS at R 
 

∝ |Φsc|2dS = |Φsc|2 R2 dΩ 

 
Define the differential scattering cross-section 

 

Ωd
dσ  ≡ (intensity of radn scattered into small solid  

    angle dΩ in direction of R) /  

    (intensity of incident radiation x dΩ) 
2 22

2
1inc

d
d

i
N

iQ rsc

i

R
aa e •∗

=

Φ Ω
= =

Φ Ω
∑  

So for a single point-like scattering centre at the 
origin dσ / dΩ = aa∗:  ( )d d d aσ σ π= Ω Ω =∫

24  
 

Note: a depends on the nature of the interaction 
between the radn and the scattering centre 

R 

dΩ = dS / R2 

dS 
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DENSITY FUNCTIONS & FOURIER TRANSFORMS 
 

Define the density function  

( ) ( )
1

N

i
i

r r rρ δ
=

≡ −∑  

This eqn describes a set of point delta functions at 
the positions of the N scattering centres s.t. 

( ) 3dr r Nρ ≡∫  

Then d dσ Ω  can be re-written in terms of the Fourier 
transform of ( )rρ  

( )

( )

2
2

3

1

d d
d

i
N

iQ r iQ r

i
aa e aa r r e

aa N S Q

σ
ρ• •∗ ∗

=

∗

= =
Ω

≡

∑ ∫  

The structure factor ( )S Q  accounts for the effects of 
interference and depends on the structure of the 

system 
 

Note: The derivation of d dσ Ω  assumes that 
the scattered wave is not attenuated (small 

sample limit), i.e. there is no beam attenuation 
and there are no multiple scattering events 
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SCATTERING CENTRES OF FINITE SIZE 
 

Consider a single atom with Z electrons distributed 
according to the density function ( )at rρ  about the 

charge centre as origin.  Then 

 
( )

( )

2
3

2

at
d d
d

iQ raa r r e

aa f Q

σ
ρ •∗

∗

=
Ω

≡

∫  

which defines the atomic form factor ( )f Q  as the 
Fourier transform of ( )at rρ  

If the electron distribution is spherically symmetric 
then ( ) ( )f Q f Q=  and the integral can be made using 

spherical polar coordinates: - 
3 2d sin d d dr r rθ θ φ=  

cosQ r Q r θ• =  
 

∴  ( ) ( )
2 2

0 0 0

cos
atd d d siniQrf Q r e r r

π π θθ φ ρ θ
∞

= ∫ ∫ ∫  

Using  cosx θ=  

( ) ( ) [ ]atd d cos sinf Q r r r x Qrx i Qrxπ ρ
∞

−
= +∫ ∫

12

0 1
2  

Hence 

( ) ( )2

0
4 at

sind Qrf Q r r r
Qr

π ρ
∞

= ∫  
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Limits: Q → 0, ( ) ( )2

0
0 4 atdf Q r r r Zπ ρ

∞
→ = =∫  

Q → ∞, ( ) 0f Q → ∞ =  
So for a single centre of finite size the scattering is 

not isotropic: it is Q-dependent 
 

E.g. for X-ray scattering from a single atom or ion 

( ) 22d
d er f Qσ

=
Ω

 

re = classical radius of an electron  
( = 2.8179 × 10-15 m), 

and the form factor f(Q) for some selected atoms 
and ions (in electron units) is given by: - 

 
O: blue (Z = 8) 
Cl: green (Z = 17) 
Cl–: magenta (Z = 18) 
K+: red (Z = 18) 
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DIFFRACTION FOR AN ASSEMBLY OF FINITE-SIZED 
SCATTERING CENTRES 

 
Let the N atoms in the scattering system be 

arranged with their centres distributed according to 
the structural density function  

( ) ( )
1

st

N

i
i

r r rρ δ
=

≡ −∑  

If the charge-density distribution associated with 
each atom is ( )at rρ  then the overall charge density 

is given by the convolution relation 

( ) ( ) ( )at str r rρ ρ ρ= ⊗  

By using the convolution theorem it follows that 

( ) ( )

( ) ( ) ( )

2
3

at st

st

d d
d

iQ raa r r r e

aa f Q f Q NS Q

σ
ρ ρ •∗

∗∗

 = ⊗ Ω

=

∫  

 
where ( )stS Q  is the structure factor associated with 

( )st rρ  and does not depend on the nature of the 
scattering process 

 
For an isotopic liquid or glass, Q Q→  

 
Henceforth, we will write ( )stS Q  as ( )S Q  
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ELASTIC & INELASTIC SCATTERING 
 

So far we have considered elastic scattering.  But 
scattering events can be either elastic or inelastic 

 
More generally, the measured intensity will depend 

on both the momentum transfer Q  and energy 
transfer E ω=  for a scattering event.  This intensity 
depends on the double differential scattering cross-

section 
 

( ) ( )d, ,
d d

kI Q E S Q E
N E k

σ σ
π

∝ =
Ω

2
1

1 0

1
4

 

 
Incident energy of quantum: E0 
 
Final energy of quantum: E1 
 
Energy transfer: E = E0 – E1 

 

Scattering cross section: σ  
(e.g., aσ π=

24  for point-like scattering centres) 
 
For a glass, the dynamical structure factor ( ),S Q E  
will have contributions from both elastic and 
inelastic (phonon and multi-phonon) scattering 
 

( ) ( ) ( ) ( )el phonon, ,S Q E S Q E S Q Eδ= +  
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For example, ( ),I Q E  for a glass at low temperature T 
 

 
 
( ),I Q E  ∼ 0 for E < 0: Quanta do not gain energy from 

the scattering system (it’s too cold!) 
 
( ),I Q E  for E = 0: Elastic line broadened by 

resolution function of spectrometer.  Signal related 
to equilibrium positions of pairs of scattering 
centres 
 
( ),I Q E  for E > 0: finite intensity because quanta can 

excite system states (phonons) 
 
 
Note: For a liquid or gas, there is no truly elastic 
scattering (i.e., there is always some recoil in the 
scattering event) 
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POWDER DIFFRACTOMETER 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Monochromator uses Bragg diffraction to select an 
incident wavelength λ. 

 
0 2k π λ= , and the incident energy E0 is fixed 

 
Detector has an efficiency ( )Eε 1  

 
In the diffraction experiment, the detector integrates 

( ),I Q E  over all energy exchanges E at constant 
scattering angle 2θ 

 

( ) ( )
meas

d d ,
d

E
E E I Q Eσ
ε

−∞
=

Ω ∫
0

1  

 0 1Q k k= −

 

  

 

0k

1k−

0k

1k
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DIFFERENTIAL SCATTERING CROSS-SECTION:  
THE STATIC APPROXIMATION 

 

The static approximation is usually made to obtain 
the differential cross-section for the total scattering.  
Here, it is assumed that E E <<0 1 such that k k0 1.  
Then,  
 

( ) ( )

( ) ( )

SA

d d ,
d

E kE E S Q E
k

E S Q

σ σ ε
π

σε
π

−∞

=
Ω

=

∫
0

1
1

0

0

4

4

 

 
We can define an observation timescale snapshotτ  by 
the time taken for an incident quantum of velocity v 
to travel one interatomic distance a, i.e., 

snapshot a vτ  where a −1010  m 
 
The condition E E <<0 1 for validity of the static 
approximation can be re-written as snapshot minτ τ , 
where minτ  is a characteristic time for atomic motion, 
e.g., the period of atomic vibration in a solid, or the 
relaxation time in a liquid.  Typically 

min sτ − −−13 1210 10  
 
Hence, the static approximation corresponds to a 
structure that is relatively static on the timescale for 
a quantum wavepacket to pass from one atom to the 
next 
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For X-ray diffraction, the photons travel at the speed 
of light 
 

 snapshot sa cτ −1810  
 

So the static approximation is valid 
 

For neutron diffraction, 

-1msv 310  
 

  snapshot sa vτ −1310  
 

So the static approximation is not valid, and 
inelasticity (or Placzek) corrections must be applied 
to the results obtained from neutron diffraction 
experiments 
 
Within the static approximation, the measured 
differential cross-section gives a more-or-less 
instantaneous or snapshot picture of the structure 
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STRUCTURE FACTOR 
 

Neutron diffraction: - 
 

( )coh inc
SA

d
d

b S Q b
N

σ
= +

Ω
2 21  
 

 
Spin and isotope incoherence → additional term that 
does not depend on Q 
 

X-ray diffraction: - 
 

( ) ( )
SA

d
d er f Q S Q

N
σ

=
Ω

221  
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REAL-SPACE STRUCTURE 
 

Subtract the forward scattering. 
Fourier transform → the pair-distribution function 

 

( ) ( ) ( )sing r dQ Q S Q Qr
rπ ρ

∞

 = + − ∫2
0

11 1
2

 
 

where ρ is the atomic number density 

 
 

( )g r  is a measure of the probability of finding two 
atoms a distance r apart 

 
The coordination number n  for the distance range 

r r r≤ ≤1 2  is obtained by integration 
 

( )
r

r

n dr r g rπ ρ= ∫
2

1

24  

 
and gives the average number of nearest-

neighbours about a particle at the origin of 
coordinates 
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The real-space information can also be expressed in 
terms of the density function ( )D r  [often 

represented as ( )G r ], which is used in pair-
distribution function (PDF) analyses: - 

 
( ) ( )

( ) ( )

PDF( ) ( )

sin

r D r G r r g r

dQ Q S Q Qr

π ρ

π

∞

 = = = − 

 = − ∫
0

4 1

2 1
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HOW IS A DIFFRACTION PATTERN BUILT-UP? 
 

Each incident quantum is not described by a perfect 
plane wave, but by a wavepacket that is coherent 

over a finite extent of space, which defines its 
coherence volume 

 

 
 

The size of the coherence volume is dependent on 
spread in wavelengths λ λ∆  selected by the 

monochromator, and by the collimation of the 
incident and scattered beams, i.e., it depends on the 

Q-space resolution of the diffractometer 
 

The maximum real-space structure that can be 
probed will depend on the size of the coherence 

volume.  Hence, each quantum will probe only part 
of the structure (that within its coherence volume) of 

a system of finite size 
 

A complete diffraction pattern is built-up from a set 
of scattered quanta, i.e., it represents an ensemble 
average of the snapshot pictures of the structure 

taken by the quanta over the duration of the 
diffraction experiment 
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DATA CORRECTIONS 
 

To obtain an accurate representation of the 
structure, the differential cross-sections must be 

placed on an absolute scale 
 

Corrections must also be performed carefully: - 
 

 
Neutrons 

• Attenuation 
• Multiple scattering 
• Placzek (inelasticity) 
• Incoherence 
• Resolution 
• Background 
• Furnace/container/pressure cell 
• Normalisation (vanadium) 
• Dead time 

X-rays 
• Attenuation 
• Multiple scattering 
• Compton scattering 
• Fluorescence/Resonance Raman 
• Resolution 
• Background 
• Polarization 
• Furnace/container/pressure cell 
• Normalisation (?) 
• Dead time 
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MULTICOMPONENT SYSTEMS 
 

System of n different chemical species α 
 

cα    = atomic fraction 
bα    = coherent scattering length 

inc,b α  = incoherent scattering length 
( )f Qα  = atomic form factor 

 

For X-ray diffraction: - 
 

( ) ( ) ( ) ( ) ( )

( ) ( )
SA

X

d
de

c c f Q f Q S Q c f Q f Q
r N

F Q c f Q

α β α β αβ α α α
α β α

α α
α

σ ∗ ∗ = − + Ω

= +

∑∑ ∑

∑

2

2

1 1 1

 

For neutron diffraction: - 
 

( ) ( )

( ) ( )
inc,

SA

N inc,

d
d

c c b b S Q c b b
N

F Q c b b

α β α β αβ α α α
α β α

α α α
α

σ  = − + + Ω

= + +

∑∑ ∑

∑

2 2

2 2

1 1
 

 
 

Each partial structure factor ( )S Qαβ  describes the 
pair-correlations between atomic species α and β 
 
 

There are ( )n n +1 2 different ( )S Qαβ  functions, 
which overlap 
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For a given material, we want to measure these 
( )S Qαβ  functions, and Fourier transform to get the 

partial pair-distribution functions 
 

( ) ( ) ( )sing r dQ Q S Q Qr
rαβ αβπ ρ

∞

 = + − ∫2
0

11 1
2

 
 
 

The weighting factors for the ( )S Qαβ  functions can 
be changed by altering either bα  or ( )f Qα .  The 

diffraction pattern will change, but the structure will 
remain unaltered 

 
Then combine these diffraction patterns to reduce 
the complexity of correlations associated with a 

single diffraction pattern 
 

Can change the bα  values by using isotope 
substitution → neutron diffraction with isotope 

substitution (NDIS) 
 
Can change the ( )f Qα  values by working near to an 

absorption edge → anomalous X-ray scattering 
(AXS) 
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NEUTRON DIFFRACTION WITH ISOTOPE 
SUBSTITUTION (NDIS) 

 

 
 

Green: Good scattering length contrast  
Orange: Marginal scattering length contrast 

[Blue: anomalous neutron diffraction] 
 
 
 
 
 
 
 
 

First-difference method 
Prepare two samples that are chemically identical, but change 

the isotopic content of one of the elements X.  
For example, exchange 

58Ni (bcoh = 14.4 fm) for 62Ni (bcoh = -8.7 fm ) 

Can then eliminate all of the partial structure factors apart from 
those of the targeted element → weighted sum of the SXβ(Q) 
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CASE STUDY: GeO2 
 

For details see Salmon et al. (2007)  
J. Phys. Condens. Matter 19 (2007) 415110 

 
Isotope b (fm) 

natGe 8.185 
70Ge 10.00 
73Ge 5.02 
natO 5.805 

 

Second-difference method 
Prepare three or more samples that are chemically identical, but 

change the isotopic enrichment of one of the elements X. 
 

Can then isolate SXX(Q) for the targeted element  

Full partial structure factor analysis 
Realistically, only feasible for binary systems. 

Prepare n (n + 1) / 2 samples with identical chemical 
compositions but with different isotopic mixtures.  

Solve the scattering matrix to isolate each of the individual 
partial structure factors. 

 

We will use this method as a case study 
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Scattering matrix 
 

( )
( )
( )

nat
nat GeGe
70

nat OO
73

nat GeO

( ) 0.074 0.150 0.211
( ) 0.110 0.150 0.256
( ) 0.030 0.150 0.133

F Q S Q
F Q S Q
F Q S Q

    
    =    

       
 

 
 

Invert matrix to obtain Sαβ (Q)  
 

( )
( )
( )

nat
GeGe nat

70
GeO nat

73
OO nat

171 108 63 ( )
65 34 38 ( )

111 62 49 ( )

S Q F Q
S Q F Q
S Q F Q

 −   
    = −     

    − −    
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Fourier transform to obtain the gαβ (r) 
 

 
 
 
 
 

Notes 
 

The multiplicative factors in the inverse matrix are large.  So 
small statistical errors in the data are inflated in the inversion 

process – most scattering matrices are poorly conditioned 
 

High statistical precision is needed for the total structure 
factors 

 

Small systematic errors on one or more of the measured total 
structure factors (e.g. poor normalisation, steps, poor 
attenuation and/or multiple scattering corrections) will 

produce large errors in the partial structure factors  
 

High accuracy for the measured total structure factors is 
essential.  Data should be carefully checked for self-

consistency using the known density and scattering lengths 
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ANOMALOUS X-RAY SCATTERING (AXS) 
 

In general, the form factor depends on the scattering 
vector Q and the incident photon energy E0 

 

( ) ( ) ( ) ( ), if Q E f Q f E f Eα α α α′ ′′= + +0 0 0  
 

where ( )f Eα′ 0  and ( )f Eα′′ 0  are the real and imaginary 
parts of the so-called anomalous dispersion term 

 

Near an absorption edge, ( )f Eα′ 0  and ( )f Eα′′ 0  change 
with E0, the detail of which depends on the chemical 

environment of the absorbing species 
 

For example, for the K-edge of Se: - 
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Energy ranges for absorption edges of the elements 
 

 
 
E.g., can probe the coordination environment of Y3+ 
in aqueous solution by using the Y K-edge 
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The method is challenging: - 
 

• Excellent incident energy resolution (< 1 eV) 
• Excellent scattered energy resolution (<100 eV?) 
• Need to measure the absorption cross-section 

to get ( )f Eα′ 0  

• Difficulties associated with resonance Raman 
and subsequent absorption 

• Contrast limited to ∼10% 
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SUMMARY AND CONCLUSIONS 
 

Neutron and X-ray diffraction are important tools for 
elucidating the structure of disordered materials 

 
Experiments require great care, and high counting 

statistics 
 

Information at the partial structure factor level is 
important for revealing the detail of the structure on 

a local and intermediate length scale 
 

Methods for obtaining this information include NDIS 
and AXS (can also combine x-ray and neutron 

diffraction) 
 

Results can be used to test the reliability of, e.g., the 
theoretical scheme used in molecular dynamics 

simulations 
 

Can also use the diffraction results to help build 
structural models via, e.g., (i) the reverse Monte 

Carlo (RMC) method [McGreevy, J. Phys.: Condens. 
Matter 13 (2001) R877] or (ii) the Empirical Potential 
Structure Refinement (EPSR) method [Soper, Phys 

Rev B 72 (2005) 104204] 
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NOTE: ENERGY OF RADIATION FOR DIFFRACTION 
STUDIES 

 

1) X-rays 

For an x-ray photon 
λ

ν hchE ==  
 

Exercise: express E in eV and λ in Å  
(1 Å ≡ 10-10 m).  Hence show that 

 

E(eV) = 12.4x103/ λ(Å) 
 
2) Neutrons 

For a thermal neutron 
nm

pE
2

2
=  

de Broglie wavelength 
p
h

=λ  

∴ 
nn m

k
m
hE

22

22

2

2


==
λ

 where 
λ
π2

≡k . 
 

Exercise: Show that E(eV)=81.81x10-3/[λ( Å)]2 

 
3) Electrons 
 

For a non-relativistic electron 
 

ee m
k

m
hE

22

22

2

2


==
λ

 
 

Exercise: Show that E(eV)=150.4/[λ( Å)]2 
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Note: If λ = 1 Å energy of neutron is 81.81 meV  
cf. 12.4 keV for an x-ray 

 

Energy of neutrons released in nuclear fission ≈ 
1 MeV.  ∴ to make diffraction experiments 
require a reduction in energy of ≈ 107.  This is 
achieved via inelastic collisions in a moderator 
material, e.g., a block of graphite at 2000 K.  The 
resultant neutrons have thermal energies ≈ kBT 

 

Note: X-rays and electrons are scattered by the 
electrons of an atom.  Neutrons are scattered by 
the nucleus of an atom, and also by the 
unpaired electrons of a magnetic atom.  
 

Note: For a thermal neutron, λ >> nuclear 
dimensions (10-15 m) we have point-like 
scattering centres ⇒ isotropic scattering. 

 


