ADD2022

Abstract ID : 69

Thursday 20 Oct, 13:55

Using 3D- \triangle PDFs from electron diffraction data to determine local structure

Ella Schmidt

Many functional materials have surprisingly simple average structures, but often partially occupied sites indicate disorder. To understand structure property relationships in complex ordered materials a description including local order is needed. Powder pair distribution functions are often used to quantitatively analyse the local structure of a material but the determination of three-dimensional local order principles requires complex modelling. For single crystal diffuse scattering data, the recently established three-dimensional delta pair distribution function (3D- Δ PDF) is the perfect tool to map local deviations from the average structure and provides a straightforward interpretation of local ordering principles [1].

To obtain 3D- Δ PDFs single crystals are needed which are suitable for the measurement with X-rays (approx. (50 μ m)³) or neutrons (approx. (0.5 mm)³). Samples of these sizes are often hard to obtain for novel functional materials. Here, we demonstrate how the 3D- Δ PDF can be obtained from electron diffraction data which can be used on samples as small as (10 nm)³.

For our proof of principle study, we use the high temperature ion conductor yttrium stabilized zirconia $Zr_{0.82}Y_{0.18}O_{1.91}$ (YSZ). YSZ crystallizes in the fluorite structure and shows composition disorder on both the metal and oxygen site. The substitution of Y^{3+} for Zr^{4+} on the metal site results in oxygen vacancies for charge compensation. Locally, O^{2-} ions relax towards the vacancies, while the metal-ions relax away from them.

Single crystals of YSZ were investigated with electron, X-ray and neutron diffraction. Highly structured diffuse scattering is observed alongside the sharp Bragg reflections. By comparing the results from our electron Δ PDF to X-ray and neutron Δ PDFs we demonstrate the reliability of the 3D- Δ ePDF. A detailed analysis of the intensity distribution in the 3D- Δ PDF in the vicinity of the nearest neighbour inter-atomic vectors allows us to quantify the local structure relaxations.

To our knowledge, this is the first 3D- Δ ePDF ever reported. This has important implications for the large variety of disordered materials of which single crystals for X-ray or neutron techniques are not available. In those cases, the 3D- Δ ePDF will pave the way to understanding and tailoring physical properties that are determined by local structure variations.

Weber, T., & Simonov, A. (2012). Z. Kristallogr., 227(5), 238-247.

Primary author(s): SCHMIDT, Ella Mara (University of Bremen)

Co-author(s) : Dr. KRYSIAK, Yasar (Institute of Inorganic Chemistry of the Leibniz University Hannover, Germany); Dr. KLAR, Paul Benjamin (Departement for Geosciences, University of Bremen); Dr. PALATINUS, Lukas (2Department of Structural Analysis, Institute of Physics of the CAS)