PDFgui – a small box modelling platform for nanoscale structure analysis

Emil S. Bozin Brookhaven National Laboratory

October 17, 2022

A reflection on PDFgui usage: increasing popularity

PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals

Farrow, CL; Juhas, P; (...); Billinge, SJL 3rd Workshop on Reverse Monte Carlo Methods

Aug 22 2007 JOURNAL OF PHYSICS-CONDENSED MATTER 19 (33)

PDFfit2 is a program as well as a library for real-space refinement of crystal structures. It is capable of fitting a theoretical three-dimensional (3D) structure to atomic pair distribution function data and is ideal for nanoscale investigations. The fit system accounts for lattice constants, atomic p ... Show more

Full Text at Publisher ***

Citations 1 of 1 1 Sort by: Citations: highest first 🔻 Publication < Previous year 120 Average Total Citations per year 100 2018 2019 2021 2022 2020 - 80 Total 126 128 136 156 81 79.75 1,276 - 60 PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals Θ1 126 128 136 156 81 79.69 1,275 - 20 Farrow, CL; Juhas, P; (...); Billinge, SJL 3rd Workshop on Reverse Monte Carlo Methods 2020 2021 Aug 22 2007 | JOURNAL OF PHYSICS-CONDENSED MATTER 19 (33) Publication "itation Time **Broo** Nationa

Clarivate

Web of Science[®]

Overview

- Small box modelling and PDFgui
- Notes of relevance for PDF analysis
- PDFgui parameters & program structure
- Illustrative PDFgui-based science example

• Non crystalline materials (liquids, amorphous solids, polymers)

Nanoscale materials

Disordered crystalline systems
with nanoscale heterogeneities

S.J.L. Billinge and I. Levin, **The Problem with Determining Atomic Structure at the Nanoscale**, *Science* **316**, 561 (2007).

PDF data modeling

Small Models: Least Squares Refinement

Up to several hundreds of atoms 'Rietveld'-type parameters: *lattice parameters, atomic positions, displacement parameters, etc.*

Refinements as function of *r*-range

Large Models: Reverse Monte Carlo

20000 + atoms Fit X-ray and neutron F(Q), G(r), Bragg profile Constraints utilized Static 3-D model of the structure (a snap-shot)

Multi-level /Complex Modeling

Refine higher level parameters (not each atom) Example nanoparticle: *diameter, layer spacing, stacking fault probability* Choose minimization scheme

Emerging: *ab initio* and force-field based approaches

Density Functional Theory Molecular Dynamics

slide courtesy of Katharine Page

PDF data modeling

0.....

PDFgui

Small Models: Least Squares Refinement

Up to several hundreds of atoms

'Rietveld'-type parameters: lattice parameters,

atomic positions, displacement parameters, etc.

Refinements as function of *r*-range

Large Models: Reverse Monte Carlo

20000 + atoms Fit X-ray and neutron F(Q), G(r), Bragg profile Constraints utilized

Static 3-D model of the structure (a snap-shot)

Multi-level /Complex Modeling

Refine higher level parameters (not each atom) Example nanoparticle: *diameter, layer spacing, stacking fault probability* Choose minimization scheme

Emerging: *ab initio* and force-field based approaches

Density Functional Theory Molecular Dynamics

slide courtesy of Katharine Page

• Non crystalline materials (liquids, amorphous solids, polymers)

Nanoscale materials

 Disordered crystalline systems with nanoscale heterogeneities

Small box PDF modeling approach

- Small box: assumption of periodic boundary conditions (P1)
- Relatively small number of atoms (up to several hundred)

- Built-in symmetry constraints with symmetry equal to or usually lower than the average crystal symmetry
- Involves least squares refinement over selected *r*-range (typically up to a few unit cells, translational symmetry not relevant for narrow range fits, when box size effectively provides "metrics")

Considering scattering contrast

Considering absorption

hydrogen	1																2	helium
																		2
н																		He
1.0079 filbium	bendlium	1										ſ	boron		nitrogan	0000000	fluorino	4.0026
3	4												5	6	7	8	9	10
Li	Be												В	C	N	0	F	Ne
6,941	9.0122												10.811	12.011	14.007	15.999	18.998	20,180
sodium 11	magnesium 12												aluminium	slicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 19
NIE	N/L av												Å	0:	D		ő	A
Na	IVIG												AI	51	Р	Э	CI.	Ar
22.990 notassium	24.305 coleium		scondium	titonium	vanadium	chromium	mongonoso	iron	coball	nickel	conner	zine	26.982 collium	28.086	30.974 presente	32.065 solonium	35.453 bromino	39,948 keynton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
1/	Ca		C -	T :	1/	0	B./	Fa	Co	NI:	C	Zn	Co	Go	Ac	Sa	Dr	1/m
n	Ua l		SC		V	UC I	IVIN	ге	60		Gu		Ga	Ge	AS	Se	DI	N
N 39.098	40.078		3C 44.966	47.867	V 50.942	51.996	1VIN 54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	A5 74.922	3e 78.96	DI 79.904	83.90
29.098 rubidium 27	40.078 stronlium 38		3C 44.966 yttrium 30	47.867 zirconium	50.942 nicbium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver 47	65.39 cadmium	69.723 Indium	72.61 tin 50	A5 74.922 antimony 51	3e 78.96 tellurium 52	79.904 Iodine	83.90 xenon 54
839.098 rubidium 37	40.078 strontium 38		30 39	47.867 zirconium 40	50.942 nicolum 41	51.996 molybdenum 42	54.938 technetium 43	55.845 ruthenium 44	58.933 rhodium 45	58.693 palladium 46	63.546 silver 47	65.39 cadmium 48	69.723 indium 49	72.61 tin 50	A3 74.922 antimony 51	78.96 tellurium 52	79.904 iodine 53	xenon 54
n 39.098 rutidium 37 Rb	40.078 stronlium 38 Sr		39 Yttrium	47.867 zirconium 40 Zr	50.942 nicolium 41 Nb	61.996 motybdenum 42 Mo	technetium 43 TC	re 55.845 ruthenium 44 Ru	58.933 flocium 45 Rh	^{58.693} pattadium 46 Pd	63.546 silver 47 Ag	^{65,39} cadmium 48 Cd	69,723 Indium 49 In	72.61 Un 50 Sn	AS 74.922 antimony 51 Sb	5e 78.96 tellurium 52 Te	79.904 Iodine 53	xenon 54 Xe
39.098 rutvdium 37 Rb 85.468	40.078 stronflum 38 Sr 87.62 badum		39 Yttium 39 Y 88.906	47.867 ztrconium 40 Zr 91.224 badejum	50.942 nicblum 41 Nb 92.906 tantakum	51.996 molybdenum 42 Mo 95.94 hunnslan	43 1981 1981 1981 1981	55.845 ruthenium 44 Ru 101.07	58.933 modium 45 Rh 102.91	58.693 palladium 46 Pd 106.42	63,546 silver 47 Ag 107,87	65.39 cadmium 48 Cd 112.41	69.723 indium 49 In 114.82 thallum	72.61 Un 50 Sn 118.71	AS 74.922 antimony 51 Sb 121.76 bismuth	52 78.96 52 Te 127.60	53 126.90 astatino	83.80 xenon 54 Xe 131.29
39,098 rubidium 37 Rb 85,468 caesium 55	40.078 stronlium 38 Sr 87.62 barlum 56	57-70	39 Ytthum 39 Y 88,906 Iutetium 71	47.867 zirconium 40 Zr 91.224 hafnium 72	V 50.942 nicolium 41 Nb 92.906 tantalum 73	51.996 molybdenum 42 MO 95.94 tungsten 74	43 54.938 technetium 43 TC [98] fhenium 75	ruthenium 44 Ru 101.07 osmium 76	58,933 rhodium 45 Rh 102,91 ridium 77	58.693 patladkum 46 Pd 106.42 platinum 78	63,546 silver 47 Ag 107,87 gold 79	48 Cd 112.41 80	69.723 indium 49 In 114.82 thallium 81	72.61 tin 50 Sn 118.71 lead 82	AS 74.922 antimony 51 Sb 121.76 bismuth 83	52 Te 127.60 polonium 84	126.90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
85,468 caesium 55 Cs	40.078 stronilum 38 Sr 87.62 barlum 56 Ba	57-70 X	39 yttrium 39 Y 88.906 hutelium 71 Lu	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf	v 50.942 nicolum 41 Nb 92.906 tantalum 73 Ta	51.996 molybdenum 42 Mo 95.94 lungsten 74 W	technetium 43 Tc 1981 fbenhum 75 Re	55.845 ruthen/um 44 Ru 101.07 osm/um 76 Os	58.933 rhodum 45 Rh 102.91 ridium 77 Ir	palladium 46 Pd 106.42 platirum 78 Pt	63.546 silver 47 Ag 107.87 gold 79 Au	48 Cd 112.41 B0 Hg	69.723 indium 49 In 114.82 thailium 81 TI	72.61 Un 50 Sn 118.71 Head 82 Pb	AS 74.922 antimony 51 Sb 121.76 bismuth 83 Bi	52 Te 127.60 pokenium 84 PO	79.904 iodine 53 1 126.90 astatine 85 At	xenon 54 Xee 131.29 radon 86 Rn
R 701Xidum 37 Rb 85,468 coesium 55 CS 132,91	40.078 stronlum 38 Sr 87.62 barlum 56 Ba 137.33	57-70 ★	44.966 yttrium 39 Y 88.906 lutelium 71 Lu 174.97	47.867 ztrconium 40 Zr 91.224 hatnium 72 Hf 178.49	v 50.942 nicolum 41 Nb 92.906 tantalum 73 Ta 180.95	51.996 molybdenum 42 Mo 95.94 lungsten 74 W 183.84	54.938 technetium 43 Tc 1981 fhenium 75 Re 186.21	55.845 ruthenkum 44 Ru 101.07 osmikum 76 OS 190.23	58.933 rhodum 45 Rh 102.91 irdhum 77 Ir 192.22	58.693 palladkum 46 Pd 106.42 platirum 78 Pt 195.08	63.546 sliver 47 Ag 107.87 gold 79 Au 196.97	48 Cd 112.41 mercury 80 Hg 200.59	69.723 indium 49 In 114.82 thailium 81 TI 204.38	72.61 Un 50 Sn 118.71 lead 82 Pb 207.2	AS 74.922 antimony 51 Sb 121.76 bismuth 83 Bi 206.98	52 Te 127.60 pokonium 84 Po 1209	79.904 Iodine 53 I 126.90 astatine 85 At [210]	xenon 54 Xee 131.29 radon 86 Rn [222]
n 39.098 rutidum 37 Rb 85.468 caesium 55 Cs 132.91 francium 87	40.078 stronlum 38 Sr 87.62 barlum 56 Ba 137.33 radium 88	57-70 ¥ 89-102	39 yttrlum 39 Y 88.906 lutelium 71 Luu 174.97 lawrencium 103	47.867 ztrconium 40 Zr 91.224 hatnium 72 Hf 178.49 ruthefordium 104	V 50.942 nkcbum 41 Nb 92.906 tantatum 73 Ta 180.95 dubnum 105	51.996 molybdenum 42 Mo 95.94 lungsten 74 W 183.84 seaborgium 106	54.938 technetium 43 TC 198 thenium 75 Re 186.21 bohrium 107	55.845 ruthen3um 44 Ru 101.07 osmilum 76 OS 190.23 hasslum 108	58.933 niodium 45 Rh 102.91 iridhum 77 Ir 192.22 meithentum 109	58.693 pattadium 46 Pd 106.42 platirum 78 Pt 195.08 ununnitium 110	63,546 silver 47 Ag 107,87 gold 79 Au 196,97 111	48 65.39 codmium 48 Cd 112.41 mercury 80 Hg 200.59 ununblum 112	69.723 indium 49 In 114.82 thallium 81 TI 204.38	72.61 Un 50 Sn 118.71 lead 82 Pb 207.2 Ununquadum 114	AS 74.922 antimony 51 Sb 121.76 bismuth 83 Bi 206.98	78.96 tellunium 52 Te 127.60 poknium 84 Po [209]	79.904 iodine 53 1 126.90 astatine 85 At [210]	xenon 54 Xe 131.29 radon 86 Rn [222]
A 39,008 rub40um 37 Rb 85,468 coesium 55 Cs 132.91 francum 87 Er	Ca 40.078 stronhum 38 Sr 87.62 barlum 56 Ba 137.33 radium 88 Ba	57-70 ★ 89-102	SC 44.956 yttrhum 39 Y 88.906 huteflum 71 LUU 174.97 lawrenclum 103	11 47.867 zrconium 40 Zrr 91.224 hadnium 72 Hf 178.49 rutherfordium 104	v 50.942 nicblum 41 Nb 92.906 tantalum 73 Ta 180.95 dubnlum 105 Db	CI 51.996 molybdenum 42 MO 95.94 lungsten 74 W 183.84 seaborgium 106	technetium 43 Tcc 1981 filentum 75 Rec 186.21 bohrium 107	55.845 ruthenium 44 Ruu 101.07 osmitum 76 OS 190.23 hasslum 108	58.933 niodium 45 Rh 102.91 iridium 77 Ir 192.22 meitnentum 109 Md	s8.693 palladkum 46 Pd 106.42 platirum 78 Pt 195.08 ununnihum 110	63,546 silver 47 Ag 107.87 gold 79 Au 196.97 unurunnum 111	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununblum 112	69,723 indium 49 In 114,82 thalikum 81 TI 204,38	Ce 72.61 Un 50 Sn 118.71 load 82 Pb 207.2 ununguadum 114	74.922 antimony 51 Sbb 121.76 bismuth 83 Bi 208.98	3e 78.96 tellurium 52 Te 127.60 polonium 84 PO [209]	79.904 iodine 53 I 126.90 astatine 85 At [210]	xenon 54 Xee 131.29 radon 86 Rn [222]
**************************************	Ca 40.078 stronhum 38 Sr 87.62 banum 56 Ba 137.33 radium 88 Ra	57-70 ★ 89-102 ★ ★	SC 44.956 yttrium 39 Y 88.996 hutelium 71 LU 174.97 lawrencium 103 Lr	11 47.867 27conlum 40 Zrr 91.224 hatnium 72 Hf 178.49 rutherfordium 104 Rf	v 50.942 nicolum 41 Nb 92.906 tantalum 73 Ta 180.95 dubnum 105 Db	CI 51.996 molybdenum 42 MO 95.94 lungsten 74 W 183.84 seaborgium 106 Sg	technetium 43 Tcc 1981 filenkum 75 Ree 186.21 bohrium 107 Bh	55.845 ruthenkum 44 Ru 101.07 osmikum 76 OS 190.23 hassium 108 HS	58.933 rhodum 45 Rh 102.91 iridhum 77 Ir 192.22 medinenium 109 Mt	NI 58.693 palladum 46 Pd 106.42 platirum 78 Pt 195.68 ununnilium 110 Uun	63,546 silver 47 Ag 107,87 90kd 79 Au 196,97 unurunium 111 Uuuu	65.39 cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununblum 112 Uub	Ga 69,723 indum 49 In 114,82 thalium 81 TI 204,38	Ce 72.61 118.71 10ad 82 Pb 207.2 ununquadum 114 Uuq	74.922 antimony 51 Sbb 121.76 bismuth 83 Bi 208.98	3e 78.96 tellurium 52 Te 127.60 polonium 84 PO [209]	79.904 lodine 53 l26.90 astatine 85 At [210]	83.800 xemon 54 Xee 131.29 radon 86 Rn [222]

*Lanthanida carias	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lantinannue series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
~~	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Considering isotopes and resonances

PDFgui – awareness of various effects

Some effects that should be accounted for in data modelling

- Thermal broadening
- Correlated motion of nearest neighbors
- Finite Q_{max} (truncation)
- Limited Q-space resolution (field of view)
- Particle size

Effect of thermal broadening

Effect of correlated atomic motion

Effect of correlated atomic motion

PDF correlated atomic motion outlaws

Effect of finite data range (Q_{max} truncation)

- ideal F(Q) is multiplied by a step function
- G(r) gets convoluted with a sinc function $\operatorname{sinc}(r) = \operatorname{sin}(Q_{\max} r) / r \rightarrow r$ -resolution $\approx \pi/Q_{\max}$
- good *r*-resolution of G requires large Q_{max} Q = 4 π sin $\theta/\lambda \rightarrow$ best results with TOF neutrons or high-energy X-rays

Effect of the Q-space resolution

- Ideal F(Q) is convoluted by Gaussian to simulate finite Q resolution
- *G(r)* gets multiplied by real-space Gaussian with reciprocal width

For *G*(*r*) to have good *r*-range high resolution in *Q* is required *Q*-resolution defines PDF "**field of view**"

Effect of the Q-space resolution

PDFgui accounts for the effect

Effects of the finite particle size – nano vs bulk

Experimental PDFs of gold nanoparticles and bulk gold, measured on NPDF. Signal damping depends on both **shape & size**!

PDFgui accounts for spherical shapes only

Things needed for small box modeling ...

- PDF data (sample.gr files) and associated information such as Q_{max} used, range of data, type of radiation, sample chemistry,
- In small box modelling approach, one typically starts from a refinement of a known/suspect structure, (thus reducing the volume of the parameter space as much as possible)
 - High-*r* region ~average structure
 - Low-*r* region ~local structure

(biased view with bulk materials in mind)

- Starting structure information
 - space group and lattice parameters
 - fractional coordinates (asymmetric unit cell) & occupancies
 - having site-multiplicities handy may be helpful for crosschecking (e.g. PDFgui works with symmetrized cells)
 - Having an origin choice handy, if multiple are available, could matter

PDF modeling

• PDF is simulated from a known structure model

$$G_{calc}(r) = \frac{1}{Nr\langle b\rangle^2} \sum_{i\neq j} b_i b_j \left(\frac{1}{\sqrt{2\pi\sigma_{ij}}} \exp\left[-\frac{(r-r_{ij})^2}{2\sigma_{ij}^2}\right] - 4\pi r\rho_0$$

- structure model is parameterized by a set of parameters p_i
- residuum R_w difference between observed and simulated PDF

$$R_w(p_1, p_2, \ldots) = \sqrt{\frac{\sum_n \left[G_{obs}(r_n) - G_{calc}(r_n)\right]^2}{\sum_n G_{obs}^2(r_n)}}$$

- least-squares refinement of p_i to minimize R_w
- Effects from setup (e.g. finite Q-resolution) or sample (correlated NN-motion) accounted for

$$B(r) = e^{-\frac{(rQ_{damp})^2}{2}} \qquad \sigma_{ij} = \sigma'_{ij}\sqrt{1 - \frac{\delta_1}{r_{ij}} - \frac{\delta_2}{r_{ij}^2} + Q_{broad}^2 r_{ij}^2}$$

ADP

PDFgui overview

- PDFgui is a graphical interface (modeling platform) built on the PDFfit2 engine
- The PDFfit2 engine written in C++, Python accessible, can be prompt operated
- PDFgui organizes fits and simplifies many data analysis tasks, such as configuring, exectuing, and plotting multiple fits, adding functionality to script driven PDFfit2
- PDFfit2 calculates & fits a theoretical 3D-structure to PDF data (does all the work!)
- The fit system accounts for lattice constants, atomic positions and anisotropic ADPs, correlated atomic motion, as well as standard experimental factors affecting the data
- The atomic positions amd thermal coefficients can be constrained to follow symmetry requirements of an arbitrary space group, enabling studies of local broken symmetry

PDFgui overview

✓ CdSe-nano.ddp (~/tutorial/examples/CdSe-nano.ddp) - PDFgui = □ x					
<u>F</u> ile <u>E</u> dit <u>V</u> iew Fi <u>t</u> s <u>P</u> ha	ses <u>D</u> ata C	a <u>l</u> culation	is <u>H</u> elp		
3 📄 🖬 💊 🥝					
Fit Tree	Parameters	Results			
CdSe-bulk	Initia	l Fixed	Refined		
CdSe-bulk.gr	1 4.3		4.302215896		
▽ 🔣 CdSe-3nm	2 7.01		7.00611078346		
🛱 CdSe-wurtzite.stru	11 0.375		0.373083000599		
Cds 🕑		Plo	t[38] CdSe-3nm.gr:	G	
			CdSe-3nm.gr:C	3	
0.3	1 1	1		Gdiff	
0.2 -		A		Gcalc	
	a 🔈		<u> </u>		
< <u>///</u> 0.1 -		N N			
Plot Control	Ph I				
X					
-0.1					
@1 -0.2					
@2		V			
-0.3 @21					
@23	20 22	24	26 28	30 32 34	
@100		2.	r		
@150	s 🕂 🛃		🔁 🖪 🛛 🗙 🔽 =	35.3005. v = 0.246248	parameters
@200					
	cn1sq.:	n 1.64294	e+u/ rea.cnisq.	: 3818.13 KW: 0.328246	×
offset –5					
Plot Reset					×
	4				>

PDFgui

- GUI interface to PDFfit2 is user friendly modelling environment that can be used for quick simulations (useful for experiment planning and sensitivity tests)
- can **organize** multiple related fits in a single **project file** (.ddp file) easily shareable with colleagues, with **journal facility**
- powerful visualization facilities
 - live plotting of refined PDF profiles
 - · parametric plots of variables from multiple fits
 - 3D structure visualization (optional connection to structure plotting)
- structure model manipulation
 - supports xyz, PDF, CIF and PDFfit formats
 - supercell expansion
 - expansion of asymmetric unit
 - generation of symmetry constraints for coordinates and atomic displacement factors, ADPs ("thermals")
- wizards for T-series, doping-series, r-series (smart extraction of meta-data from files)

Easy set up for "on the fly" refinements of incoming data helps making experimental decisions

PDFgui parameters associated with DATASET

Fit range (r_{MIN}, r_{MAX}) fixed in refinement

Q_{max} fixed in refinement

Q_{damp} refined for calibrant fixed for sample

Q_{broad} refined for calibrant fixed for sample

dscale refined user selected refinement r-range

upper limit of integration used in Fourier transform defines r-space resolution, predetermined

Gaussian dampening (due to limited Q-resolution)

High-*r* peak broadening (due to increased refined intensity noise at high Q and other sources, only significant when r_{MAX} is large)

scale factor associated with dataset

PDFgui parameters associated with PHASE

pscale refined	phase scale factor NOTE: could be redundant/correlated with dscale
a, b, c, α, β, γ refined	lattice parameters
x[n] y[n] z[n] occ[n] u[16,n] refined (per symmetry)	x-position (fractional coordinates) y-position z-position site occupancy anisotropic displacement parameters U _{ij} [Å ⁻²]

NOTE: Refinement parameters can be correlated, particularly when a model is refined over a narrow r-range of data. PDFgui reports on correlations > |0.8|

PDFgui parameters associated with PHASE for correlated atomic motion

Note: Empirical correlated motion parameters are selected depending on material, they are very strongly correlated and affect other parameters

PDFgui parameters for nanoparticles

PDFgui declarations associated with PHASE

X declaration atom type associated with given site (all sites) e.g. Ni/Ta/Ca (label used to read scattering info from lookup tables of b_{coh} and Z).

PDFgui declarations associated with DATASET

Neutron/X-ray	scatterer type
declaration	(used to determine lookup table)

NOTE: In rare instances one may experience the following

In case of X-ray radiation Z_X is used for element X. If ions present one can change X from original element to a fellow element with adequate electron count.

In case of neutron radiation b_{cohX} is used for element X. Lookup table contains information per natural isotope abundance. If isotope substitution is present, lookup table has to be modified with adequate *b* specified for a dummy element with made-up alphabetical code that will then be declared in the phase using that alphabetical code.

Parameters are assigned by the handle syntax **@pn**, where **pn** is the parameter number

For example, @1, @55, @321, etc, note that numbers do not have to be consecutive

Variables that are assigned the same handle will be described by the same parameter

Caution should be exercised to avoid unintentional assignment of the same parameter number to incompatible variables (variables of different type)

...more details at the tutorial ©

Illustrative example: emerging state in AgGaTe₂

Why is lattice thermal conductivity at high temperature Ultralow, and smaller in Ag- than in the Cu-variants?

CuGaTe, CulnTe₂ AgGaTe, _{K_} (Wm⁻¹K⁻¹) 0.2 900 300 450600 750 Temperature (K)

Diamondoid structures (zincblende doubled along c-axis) of intense interest in high-performance thermoelectricity

Illustrative example: emerging state in AgGaTe₂

Atomic ADPs of **Ag** are abnormally enlarged in the ab-plane (perp. to c-axis) indicating in-plane nanoscale disorder!

Rietveld finds that in average structure c-axis of **Ag-variant** has negative thermal expansion (**NTE**) while **Cu-variant** behaves normally. Why?

Illustrative example: emerging state in AgGaTe₂

PDFgui modeling evidences short-range distortion of AgTe₄ tetrahedra, correlated over nanometer length-scale!

- discovery via elaborate PDFgui modeling
- distortion involves local AgTe₄ rotations leading to global NTE effect
- continuous emergence on warming

Brookhaven

• NTE a macroscopic measure of nanoscale distortion and its evolution on warming

Hongyao Xie et al, Adv. Mater. **34**, 2202255 (2022)