

ISIS Neutron and Muon Source

EPSR & Dissolve

Data-driven structural modelling of total scattering data

Dr Tristan Youngs Disordered Materials Group tristan.youngs@stfc.ac.uk

ISIS Neutron and Muon Source

Disordered Materials and Total Scattering

Disordered Materials

- Show predominantly local ordering (i.e. on the scale of atoms or molecules)
- Show primarily diffuse scattering ("soft" features in measured data)
- Are typically dynamic (e.g. liquids) average structural picture is obtained
- May show long-range order (i.e. Bragg scattering)
- May contain large length-scale correlations (e.g. micelles, lamellae)

Liquids

Solutions

Condensed phases under confinement

Technology **Facilities** Council

Total Scattering Instruments @ ISIS

Small Angle Neutron Diffractometer for Amorphous and Liquid Samples $3 < 2\theta < 38^{\circ}, 0.1 < Q < 50 \text{ Å}^{-1}$

General Materials Diffractometer 1.21 < 20 < 171.4°, 0.04 < Q < 50 Å⁻¹

ISIS Neutron and Muon Source

All three instruments exist to probe and understand material structure

Total Structure Factor F(Q)

Muon Source

- Contains all correlation information between all "objects" in the system
- Also includes Bragg scattering
- Also includes any SANS

"A single dataset encompassing structural information on the target sample, no matter the phase, complexity, or composition of the system."

Interpreting F(Q)

Can Fourier transform data from Q-space (instrument) to r-space (real)

Non-trivial to analyse by inspection. Angular correlations? 3D structure?

Simulating F(Q)

Atomistic simulation – molecular dynamics, Monte Carlo – using off-the-shelf forcefield.

Can calculate any correlation I want from a simulation, but does it reflect reality?

Simulation vs Reality

Forcefields can give results close to experiment, but often show discrepancies.

- Parameterised against phase data etc.
- Rarely against bulk structure data

Solution?

- Modify the forcefield to improve it
- By hand? Tedious, impractical...
- Automatically, using the data? How?

Joining Simulation and Experiment

- How can I form a simulation consistent with the experimental data?
- How can I expand my experimental data to reduce underdetermination?

ISIS Neutron and Muon Source

Data-Driven Refinement

The Goal

- Make a simulation of a system of arbitrary complexity
- Compare available experimental F(Q) with simulated F(Q)
- Adjust the underlying forcefield to improve agreement
- Calculate structural properties of interest
- Write a paper
- Go home

The Target: Pair Potentials

Describes the interactions between atoms "through space"

Lennard Jones

Interatomic Potential

 $\frac{R}{\sigma}$

1.6

1.7

1.8

 $U_{LJ} = 4\epsilon \left(\left(\frac{\sigma}{R} \right)^{12} - \left(\frac{\sigma}{R} \right)^{6} \right)$

R

1.9

2.0

weak attractive force

 $R = 2\sigma$

- Parameters from:
 - Existing forcefields (LJ+q)
 - Calculated via QM / DFT (q)

strong repulsive

forces

Constructing the F(Q)

$$F(Q) = \sum_{i,j} (2 - \delta_{ij}) c_i c_j b_i b_j S_{ij}(Q)$$
 Total Structure Factor
(Experimental Observable)

$$c_i = \frac{n_i}{N}$$
 $b_i = scattering length$

$$S_{ij}(Q) = \rho \int_{0}^{\infty} 4\pi r^2 g_{ij}(r) \frac{\sin Qr}{Qr} dr$$

(Simulation Observable)

Partial Structure Factor

Atom Types

- A specific kind of atom in the simulation
 - Depends at least on the element. Can be split by chemical environment.
 - Does not depend on isotope...

Isotopic Substitution

$$F(Q) = \sum_{i,j} (2 - \delta_{ij}) c_i c_j b_i b_j S_{ij}(Q)$$

$$F(Q) = \sum_{i,j} (2 - \delta_{ij}) c_i c_j b_i b_j S_{ij}(Q)$$

$$H = D^{(2H)} = C = AI$$

$$Fe$$

$$n^{(b_c)} = -3.74 = 6.67 = 6.65 = 3.45 = 9.45$$

- Partial S(Q) weighted by coherent scattering length, **b**
- For neutrons, **b** is dependent on isotope
 - e.g. ²H for H, ¹⁵N for N, ⁶Li for Li
- Key assumption: structure is independent of isotopes used
- Perform multiple measurements on the same system, with different isotopic substitutions

Isotopic Water

- Swapping H for ²H (D) we can get three distinct datasets focussing on one atom type
 - H₂O
 - D₂O
 - 50:50 mix of H_2O and D_2O

Swapping isotopes always needs to involve enough atoms to produce a noticeable change in the F(Q)

g(r) to S(Q) to F(Q) and back again?

Muon Source

The General Case

- For an "ideal" system such as H₂O where enough isotopic substitutions can be made, direct matrix inversion is possible
- What about cases where one or more partials only contribute weakly?
- What about cases where not enough isotopic substitutions can be made?

For example, silica:

$$\begin{bmatrix} F_{SiO_2}(Q) \end{bmatrix} = \begin{bmatrix} 0.0191 & 0.1070 & 0.1497 \end{bmatrix} \begin{bmatrix} S_{SiSi}(Q) \\ S_{SiO}(Q) \\ S_{OO}(Q) \end{bmatrix}$$

No inversion possible, so no route from F(Q) to S(Q) (and g(r))

The Augmented Scattering Matrix

- We have a simulation which we assume gives us a good "guess" of the F(Q) and hence a good guess for the partial S(Q)
- Define a feedback factor, 0 < f < 1, and write new weighting factors

• Now we have an overdetermined matrix for which we can find a pseudoinverse

What About Bound Terms?

- Typically dealing with molecular species, so we have chemical bonds (and angles, torsions etc.)
- Assumed / forcefield-obtained values may not reflect reality...

ISIS Neutron and Muon Source

Empirical Potential Structure Refinement

1) Take differences between experimental and simulated F(Q) to get $\Delta F(Q)$

- 1) Take differences between experimental and simulated F(Q) to get $\Delta F(Q)$
- 2) Enter these $\Delta F(Q)$ into the inverse scattering matrix to generate $\Delta S(Q)$

$\left[\Delta S_{00}(Q)\right]$	4.8238	-2.7037	24.6061	$\Delta F_{H_2O}(Q)$
$\Delta S_{OH}(Q) =$	-5.8227	1.6265	4.1962	$\Delta F_{D_2O}(Q)$
$\Delta S_{HH}(Q)$	4.1525	4.1525	-8.3050	$\Delta F_{HDO}(Q)$
$\begin{bmatrix} S_{00}(Q) \end{bmatrix}$	4.8238	-2.7037	24.6061	$\left[F_{H_2O}(Q)\right]$
$\begin{bmatrix} S_{00}(Q) \\ S_{0H}(Q) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	4.8238 5.8227	-2.7037 1.6265	24.6061 4.1962	$\begin{bmatrix} F_{H_2O}(Q) \\ F_{D_2O}(Q) \end{bmatrix}$

Science and Technology Facilities Council

- 1) Take differences between experimental and simulated F(Q) to get $\Delta F(Q)$
- 2) Enter these $\Delta F(Q)$ into the inverse scattering matrix to generate $\Delta S(Q)$

$\left[\Delta S_{00}(Q)\right]$	4.8238	-2.7037	24.6061	$\left[\Delta F_{H_2O}(Q) \right]$
$\Delta S_{OH}(Q) =$	-5.8227	1.6265	4.1962	$\Delta F_{D_2O}(Q)$
$\Delta S_{HH}(Q)$	4.1525	4.1525	-8.3050	$\Delta F_{HDO}(Q)$

3) Transform the $\Delta S(Q)$ into $\Delta g(r)$ and use these to form an additional, empirical potential for each atom type pair

- 1) Take differences between experimental and simulated F(Q) to get $\Delta F(Q)$
- 2) Enter these $\Delta F(Q)$ into the inverse scattering matrix to generate $\Delta S(Q)$

$\Delta S_{00}(Q)$	4.8238	-2.7037	24.6061	$\Delta F_{H_2O}(Q)$
$\Delta S_{OH}(Q) =$	-5.8227	1.6265	4.1962	$\Delta F_{D_2 0}(Q)$
$\Delta S_{HH}(Q)$	4.1525	4.1525	-8.3050	$\Delta F_{HDO}(Q)$

- 3) Transform the $\Delta S(Q)$ into $\Delta g(r)$ and use these to form an additional, empirical potential for each atom type pair
- 4) Repeatedly run the simulation and refine <u>additional potentials</u> until the experimental and simulated F(Q) 'match'

Potential Refinement: EPSR results

Technology Facilities Council

Analyse the Refined Simulation

ISIS Neutron and Muon Source

The Tools & Their Limits

EPSR & Dissolve

Empirical Potential Structure Refinement (EPSR)

- Developed by Prof. A. K. Soper
- Fortran / OpenMP
- Monte Carlo, custom forcefield, 140k atoms

https://www.isis.stfc.ac.uk/Pages/Empirical-Potential-Structure-Refinement.aspx

Dissolve

- Developed by Team Dissolve
- C++ / TBB / (OpenMPI)
- Monte Carlo / MD, standard forcefield, 3M+ atoms

Science and Technology Facilities Council

https://www.projectdissolve.com

[†]With higher confidence than a simulation alone

Data Quality

Both EPSR and Dissolve use (currently) the same procedure of matrix & potential inversion.

Theory can link measured scattering intensities to real-space simulation data – but is **idealised**

Data must be well processed:

- Sample environment and instrument backgrounds & containers removed
- Remove multiple scattering and beam attenuation effects
- Remove self-scattering interference scattering only
- Remove inelastic scattering: important (and difficult) for light H.
- Have a normalised intensity on an absolute scale (barns sr⁻¹ atom⁻¹)

It's Just a Simulation!

Perfect reproduction of data is not possible

- 1. Unknown (or not completely removed) instrument effects
- 2. Limitations in forcefield functional forms / potentials
- **3.** Finite simulation size
- 4. Real-world systems are not 100% pure or 100% isotopically substituted

Can arguably show improvement over pure simulation, even if underdetermined, and has been successfully applied to a huge variety of systems...

ISIS Neutron and Muon Source

Confined Fluid Mixtures

 Complete hydrogenation of benzene to cyclohexane using a 3wt% Pt catalyst supported on MCN4 41

- Large contrast between reactant and product adding six hydrogen atoms
- Mild conditions and no intermediates, good reaction to study prior to more complex more industrially relevant reactions.
- MCM-41 displays periodically arranged pores with minimal pore size disruption so could be modelled with less complexity than some less structurally ordered catalysts or catalyst supports.

Neutrons + NMR in Flow

- Use vanadium can (quartz would be good, but overlaps structurally with our substrate)
- Use Ar gas flow to (continually) deliver reactant / product mixture to neutron and NMR cells
- Flow H₂ or D₂ gas simultaneously
- Allows longer neutron data acquisition times
- NMR tells us the speciation

What is the liquid structure at various composition points within the catalyst support?

Experimental Data

- Data collected at four compositions
- <100> Bragg peak
 - Position reflects MCM-41 pore array spacing
 - Intensity dependent on mixture composition
 - Increases as C₆D₆ reacts to C₆D₁₂

3-d

 Higher Q regime indicates changes in liquid arrangement and intramolecular structure

100% C₆D₆

69% C₆D₆

2-d

4-d

Science and Technology Facilities Council

EPSR Simulation

Two-stage process

1. Construct empty MCM-41 using <100> peak to inform unit cell size and pore radius

2. Add in NMR-determined ratio of benzene / cyclohexane at a sensible density and refine again

Basic Liquid Structure

ISIS Neutron and Muon Source

g(r)

3D Structure

Current / Emerging Challenges

- Accounting for heterogeneity of samples
 - Partial pore filling
 - Pore size distribution
- System size coarse graining & refinement
- Soft link between data reduction and simulation
- Extending (improving?) the original EPSR methodology

Dissolve provides a modular framework on which all of this can be tested / built.

Acknowledgements

Disordered Materials @ ISIS

D. T. Bowron, T. F. Headen, O. Alderman, T.-L. Hughes, and A. K. Soper **Team Dissolve**

A. Washington, D. Nixon, and all of our contributors

EPSR – Soper, *Mol. Phys.* **99**, 1503 (2001) <u>https://www.isis.stfc.ac.uk/Pages/Empirical-</u> <u>Potential-Structure-Refinement.aspx</u>

Dissolve – Youngs, *Mol. Phys.* **117**, 3464 (2019) <u>https://www.projectdissolve.com</u>

ISIS Neutron and Muon Source Topics in Catalysis (2021) 64:722–734 https://doi.org/10.1007/s11244-021-01437-w

ORIGINAL PAPER

Bulk and Confined Benzene-Cyclohexane Mixtures Studied by an Integrated Total Neutron Scattering and NMR Method

Terri-Louise Hughes¹⁽ⁱ⁾ · Marta Falkowska¹⁽ⁱ⁾ · Markus Leutzsch^{2,4}⁽ⁱ⁾ · Andrew J. Sederman²⁽ⁱ⁾ · Mick D. Mantle² · Thomas F. Headen³⁽ⁱ⁾ · Tristan G. A. Youngs³⁽ⁱ⁾ · Daniel T. Bowron³⁽ⁱ⁾ · Christopher Hardacre¹^(j)

Accepted: 10 April 2021 / Published online: 23 April 2021 © Crown 2021